

TMM-540

ИЗМЕРИТЕЛИ ПАРАМЕТРОВ ЭЛЕКТРОБЕЗОПАСНОСТИ ЭЛЕКТРОУСТАНОВОК

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Версия 1.01 июн.2024г.

1	БЕЗОПАСНОСТЬ	7
2	ГЛАВНОЕ МЕНЮ	8
2.1	НАСТРОЙКИ	9
2.1.	1 Настройки измерителя	9
2.2	ПАРАМЕТРЫ ИЗМЕРЕНИЙ	10
2.2.	1 База устройств защиты	
2.3	СВЯЗЬ	14
2.3.	1 Соединение по USB	
2.3.2	2 Подключение к сети Wi-Fi	
2.3.	3 Параметры E-Mail	15
2.4	ОБНОВЛЕНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	15
2.4.	1 Обновление по USB	
2.4.2	2 Обновление по Wi-Fi	
2.5	РЕГИОНАЛЬНЫЕ НАСТРОЙКИ	16
3	ИЗМЕРЕНИЯ	17
3.1	ДИАГНОСТИКА, ПРОВОДИМАЯ ИЗМЕРИТЕЛЕМ – ЛИМИТЫ	
3.2	ИЗМЕРЕНИЕ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ И ЧАСТОТЫ	
3.3	ПРОВЕРКА ПРАВИЛЬНОСТИ ПОДКЛЮЧЕНИЯ ЗАЩИТНОГО ПРОВОДА	19
3.4	ПАРАМЕТРЫ ПЕТЛИ КОРОТКОГО ЗАМЫКАНИЯ	20
3.4.	1 Параметры измерений	20
3.4.2	2 Параметры петли короткого замыкания в цепи L-N и L-L	21
3.4.3	3 Параметры петли короткого замыкания в цепи L-PE	24
3.4.4	4 Сопротивление петли КЗ в цепи L-PE, защищенной УЗО	26
3.4.	5 Ожидаемый ток короткого замыкания	
3.4.	6 Измерение сопротивления петли короткого замыкания в сети IT	29
4	ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ	32
4.1	ПАРАМЕТРЫ ИЗМЕРЕНИЙ	32
4.1.	1 Измерение сопротивления заземления трёхполюсным методом (R _E 3P)	
4.1.2	2 Измерение сопротивления заземления четырёхпроводным методом (R _E 4P)	
4.1. кле	3 Измерение сопротивления заземления трёхполюсным методом с дополнительными щами (R _E 3P+клещи)	40
4.1.4	4 Измерение сопротивления заземления методом двух клещей	43
4.2	УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ГРУНТА	45
4.2.	1 Параметры измерений	45
4.2.2	2 Основные элементы экрана	46
4.2.	3 Измерение удельного сопротивления грунта	47
4.3	ПАРАМЕТРЫ ДИФФЕРЕНЦИАЛЬНЫХ ВЫКЛЮЧАТЕЛЕЙ УЗО	50

4.3.1	Параметры измерений	50			
4.3.2	2 Ток срабатывания УЗО				
4.3.3	Время срабатывания УЗО				
4.3.4	Измерения в сетях IT	55			
4.4	АВТОМАТИЧЕСКИЕ ИЗМЕРЕНИЯ ДИФФ. ВЫКЛЮЧАТЕЛЕЙ	56			
4.4.1	Параметры автоматического измерения УЗО	56			
4.4.2	Автоматическое измерение УЗО	57			
4.5	СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ				
4.5.1	Параметры измерений	60			
4.5.2	Измерение с использованием измерительных зондов	63			
4.5.3	Измерение с использованием адаптера UNI-Schuko (WS-03 и WS-04)	65			
4.5.4	Измерение с использованием AutoISO-1000С	67			
4.6	НИЗКОВОЛЬТНОЕ ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ	69			
4.6.1	Измерение сопротивления	69			
4.6.2	Измерение сопротивления контактных соединений, защитных проводников и				
прово,	дников системы уравнивания потенциалов током ±200 мА	71			
4.7	ПОСЛЕДОВАТЕЛЬНОСТЬ ЧЕРЕДОВАНИЯ ФАЗ	74			
4.8	НАПРАВЛЕНИЕ ВРАЩЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯ	75			
4.9	ИЗМЕРЕНИЕ ОСВЕЩЁННОСТИ	76			
5 A	ВТОМАТИЧЕСКИЕ ИЗМЕРЕНИЯ	77			
5.1	ВЫПОЛНЕНИЕ АВТОМАТИЧЕСКИХ ИЗМЕРЕНИЙ	78			
5.2	СОЗДАНИЕ ИЗМЕРИТЕЛЬНЫХ ПРОЦЕССОВ	79			
6 P	ЕГИСТРАТОР	80			
6.1	ФУНКЦИОНАЛЬНОЕ ОПИСАНИЕ	80			
6.2	ОСНОВНЫЕ ЭЛЕМЕНТЫ ЭКРАНА	83			
6.2.1	Верхняя панель				
6.2.2	Панель заголовка				
6.2.3	Главное окно				
6.2.4	Панель информации о параметрах текущей сети				
6.2.5	Справка				
6.3	ПОДКЛЮЧЕНИЕ ИЗМЕРИТЕЛЬНОЙ СХЕМЫ	85			
6.3.1	Измерительные схемы				
6.3.2	Контроль правильности подключения				
6.4	КОНФИГУРАЦИЯ РЕГИСТРАЦИИ	89			
6.4.1	Конфигурация с помощью измерителя				
6.4.2	Конфигурация регистрации	90			
6.5	НАСТРОЙКИ АНАЛИЗАТОРА	92			
6.5.1	Настройки оборудования – клещи (способ подключения)				

6.5.2	Настройки – Региональные настройки	93		
6.5.3	Менеджеры – менеджер файлов			
6.6	ТЕКУЩИЙ ПРОСМОТР СЕТИ (РЕЖИМ LIVE)	95		
6.6.1	Мгновенные сигналы напряжений и токов (осциллограммы)	96		
6.6.2	Временной график действующих значений	97		
6.6.3	Текущие показания – табличный вид			
6.6.4	Векторная диаграмма основных компонентов (векторы)	100		
6.6.5	Диаграмма / таблица гармоник	101		
6.7	ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ РЕГИСТРАЦИИ	102		
6.7.1	Время регистрации	102		
6.7.2	Советы к регистрации	103		
6.8	АНАЛИЗ РЕГИСТРАЦИИ	104		
6.8.1	Временной график регистрации	105		
6.8.2	Диаграмма гармоник сигнала	109		
6.8.3	Калькулятор стоимости энергии	111		
6.9	КАЛЬКУЛЯТОР ПОТЕРЬ ЭНЕРГИИ	114		
6.9.1	Функциональное описание	114		
6.9.2	Конфигурация калькулятора потерь	116		
7 П	АМЯТЬ ИЗМЕРИТЕЛЯ	117		
7.1	ПАМЯТЬ ИЗМЕРЕНИЙ	117		
7.1.1	Настройки памяти	117		
7.1.2	Организация памяти	118		
7.1.3	Запись результата измерения	123		
7.1.4	Просмотр сохраненных измерений	124		
7.1.5	Доступ к записям измерений	125		
7.1.6	Поиск в памяти измерителя	126		
7.2	ПАМЯТЬ РЕГИСТРАТОРА	126		
7.2.1	Карта памяти microSD	126		
7.2.2	Внешняя память USB (флэшка)	127		
7.2.3	Работа с программой Sonel Analysis	127		
7.2.4	Подключение к ПК и передача данных	127		
8 П	ИТАНИЕ ИЗМЕРИТЕЛЯ	128		
8.1	КОНТРОЛЬ РАЗРЯДА АККУМУЛЯТОРА	128		
8.2	ЗАМЕНА АККУМУЛЯТОРОВ	128		
8.3	ЗАРЯДКА АККУМУЛЯТОРОВ	129		
8.4	ОБЩИЕ ПРАВИЛА ПРИМЕНЕНИЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ (LI-ION)	130		

9.1	ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	131
9.1.1	Измерение переменного напряжения (True RMS)	131
9.1.2	Измерение частоты	131
9.1.3	Измерение сопротивления петли короткого замыкания Z _{L-PE} , Z _{L-N} , Z _{L-L}	131
9.1.4 выклю	Измерение сопротивления петли короткого замыкания Z _{L-PE[RCD]} (без срабатывания чателя УЗО)	132
9.1.5	Измерение параметров выключателей УЗО	133
9.1.6	Измерение сопротивления заземляющих устройств R _E	136
9.1.7	Низковольтное измерение сопротивления	137
9.1.8	Измерение сопротивления изоляции	137
9.1.9	Измерение освещённости	139
9.1.10	Последовательность фаз	139
9.1.11	Вращение двигателя	139
9.2	ДАННЫЕ РЕГИСТРАТОРА	140
9.2.1	Входы	140
9.2.2	Дискретизация и часы реального времени RTC	140
9.2.3	Измерение напряжения	141
9.2.4	Измерение тока (True RMS)	141
9.2.5	Измерение частоты	142
9.2.6	Измерение гармоник	142
9.2.7	Асимметрия	142
9.2.8	Измерение мощности и энергии	142
9.2.9	Оценка погрешности измерения мощности и энергии	143
9.3	ДОПОЛНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ	144
9.4	ДОПОЛНИТЕЛЬНАЯ ПОГРЕШНОСТЬ	145
9.4.1	Лополнительные погрешности по ГОСТ IEC 61557-2-2013 (Riso)	145
9.4.2	Лополнительные погрешности по ГОСТ IEC 61557-3-2013 (Z)	145
9.4.3	Дополнительные погрешности по ГОСТ IEC 61557-4-2013 (R ±200 mA)	145
9.4.4	Лополнительные погрешности при измерении сопротивления заземления (Вг)	145
9.4.5	Дополнительные погрешности по ГОСТ IEC 61557-6 (УЗО)	146
10 КС	ОМПЛЕКТАЦИЯ	147
10.1	СТАНДАРТНАЯ КОМПЛЕКТАЦИЯ	147
10.2	ДОПОЛНИТЕЛЬНАЯ КОМПЛЕКТАЦИЯ	147
10.2.1	Клещи С-3	148
10.2.2	Клещи С-4А	150
10.2.3	Клещи С-5А	151
10.2.4	Клещи С-6А	153
10.2.5	Клещи С-7А	155
10.2.6	Клещи F-1, F-2A, F-3A	155
10.2.7	Клещи N-1	157

11	ПОЛОЖЕНИЯ КРЫШКИ ИЗМЕРИТЕЛЯ	158
12	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	158
13	УТИЛИЗАЦИЯ	158
14	ПОВЕРКА	158
15	СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ	159
16	СВЕДЕНИЯ О СЕРВИСНОМ ЦЕНТРЕ	159
17	ССЫЛКИ В ИНТЕРНЕТ	159

1 БЕЗОПАСНОСТЬ

Измеритель ТММ-540 предназначен для контрольных испытаний защиты от поражения в сетях переменного тока и регистрации параметров качества электрической энергии. Он используется для выполнения измерений, результаты которых определяют состояние безопасности электрического оборудования. В связи с этим, чтобы обеспечить правильную работу и достоверность полученных результатов, следует придерживаться следующих рекомендаций:

- Перед началом эксплуатации измерителя следует внимательно ознакомиться с настоящим руководством и соблюдать правила техники безопасности и рекомендации производителя;
- Любое другое применение, кроме указанного в данном руководстве, может привести к повреждению прибора и стать источником серьёзной опасности для пользователя;
- Измерителем ТММ-540 могут пользоваться только квалифицированные работники, имеющие необходимые допуски для работы с электроустановками. Эксплуатация измерителя посторонними лицами может привести к повреждению прибора и быть источником серьёзной опасности для пользователя;
- Применение данного руководства, не исключает необходимости соблюдения требований правил ТБ и пожарной безопасности, необходимых для выполнения работ данного вида.
 Перед началом работ, при использовании устройства в помещениях с особыми условиями, например, с взрыво- и пожароопасной атмосферой, необходимо проведение консультаций с лицом, ответственным за безопасность труда;
- Недопустимо использование:
 - о измерителя, который был повреждён и полностью или частично неисправен.
 - о проводов с повреждённой изоляцией.
 - измерителя, после длительного хранения в плохих условиях (например, при высокой влажности). После перемещения измерителя из холодной среды в тёплое помещение с повышенной влажностью, нельзя выполнять измерения, пока прибор не согреется до температуры окружающего воздуха (около 30 минут).
- В случае разряда аккумулятора до уровня, делающего невозможным дальнейшие измерения, прибор отобразит соответствующее сообщение, а затем выключится;
- Хранение измерителя с разряженными элементами питания угрожает разливом их содержимого и повреждением прибора;
- Перед началом измерения необходимо убедиться, что провода подключены к соответствующим измерительным гнёздам;
- Нельзя использовать измеритель с не закрытой или открытой крышкой отсека батарей (аккумуляторов) или запитывать его от других источников, кроме указанных в данном руководстве;
- Входы **R**_{ISO} измерителя имеют электронную защиту от перегрузки (например, в результате подключения к цепи, находящейся под напряжением) до 463 В RMS в течение 60 секунд;
- Ремонт может быть выполнен только в авторизованном Сервисном Центре.

Следует использовать только аксессуары, предназначенные для данного прибора, перечисленные в гл.10. Применение других аксессуаров создаёт риск для пользователя, может вызвать повреждение измерительного разъёма и вносит дополнительную погрешность измерения.

В связи с непрерывным развитием программного обеспечения прибора, изображение на дисплее для некоторых функций может отличаться от представленного в данном руководстве.

2 ГЛАВНОЕ МЕНЮ

Главный экран доступен:

- После включения измерителя;
- В любой момент после нажатия на дисплее иконки 👚 (кроме функции Регистратора).

Рис. 2.1 Основные элементы экрана

1 Имя активного меню.

2 Время.

3 Дата.

- 4 Главный экран.
- 5 Объём свободного места на карте памяти.
- 6 Сила сигнала беспроводной сети.
- 7 Индикатор разряда аккумулятора.
- 8 Справка для активного меню:
 - Визуализация схемы подключения;
 - Объяснения функций иконок.

В главном меню доступны параметры:

- Автоматические измерения;
- **Регистратор** измерение электрических параметров тестируемой сети. Описание режима регистрации приведено в гл.6;
- Настройки переход к настройкам основных функций измерителя и его параметров;

- **Измерения** выбор измерительной функции. Описание отдельных функций содержится в гл.3;
- Память просмотр и управление сохраненными результатами измерений. Подробное описание функции содержится в гл.7;
- Информация об измерителе.

2.1 НАСТРОЙКИ

В подменю Настройки доступны:

2.1.1 Настройки измерителя

а. Установка даты и времени

- Настройки измерителя
- Настройки памяти
- Обновление ПО
- Измерения
- Настройки связи
- Региональные настройки

- Дата и время
- Автоматическое отключение
- Параметры дисплея

Описание функциональных иконок:

Возврат к предыдущему экрану. При прикосновении может появиться запрос о сохранении или отмене изменения:

Да — подтверждение выбора. **Нет** — отмена изменений.

Отмена – отмена действия.

Сохранение изменений.
 Возврат к главному меню.

с. <u>Параметры дисплея</u>

Гашение Никогда 2 маннуты 5 минут	дисплея	Яркость дисплея	*
--	---------	-----------------	---

Установите необходимый параметр.

- Время, через которое дисплей погаснет выбрать нужный вариант;
- Яркость дисплея переместите указатель ползунка

2.2 ПАРАМЕТРЫ ИЗМЕРЕНИЙ

В меню Параметры измерений можно редактировать:

- Общие настройки измерений:
 - о Система единиц.

•

- Таймер для автоматического измерения.
- о Параметры памяти (автоинкремент ячеек памяти).
- Настройки параметров сети:
 - о Номинальное напряжение сети.
 - о Способ представления результата измерения петли короткого замыкания.
 - о Частота сети.
 - о Тип системы заземления питающей сети.
- Базу устройств защиты.

Перед измерениями необходимо выбрать Тип сети, от которой питается тестируемый объект.

Затем следует выбрать **Номинальное напряжение сети U**_n (110/190 В, 115/200 В, 127/220 В, 220/380 В, 230/400 В или 240/415 В). Это напряжение используется при расчёте значения ожидаемого тока короткого замыкания.

Ввод **частоты сети**, являющейся источником потенциальных помех, необходим для подбора соответствующей частоты измерительного сигнала при измерениях сопротивления заземления. Такой подбор обеспечивает оптимальную фильтрацию помех. Измеритель адаптирован для фильтрации помех, поступающих из сети 50 Гц и 60 Гц.

Параметр Автоинкремент при его активизации 🧹 делает так, что каждое сохраняемое измерение (гл.7.1.3) размещается в автоматически созданной новой точке измерения.

Счётчик времени в автоматических измерениях определяет интервал времени, через который начинаются следующие шаги процедуры измерения.

2.2.1 База устройств защиты

На экране **Настройка параметров предохранителей** можно задавать и редактировать параметры выключателей защиты:

- Производитель;
- Тип (модель устройства защиты);
- Характеристики защиты.

а. Добавление характеристик устройств защиты

Выберите иконку []];

Появится меню для добавления время-токовых характеристик устройства защиты.

Для создания новой характеристики:

- Выбрать иконку 🕂;
- Нажмите поле выбора имени.

Появится запрос подтверждения выбора.

Описание функциональных клавиш:

- **Да** подтверждение выбора.
- Нет отмена изменения.

Чтобы изменить содержимое выбранной ячейки, коснитесь ее **дважды**.

Появится экранная клавиатура. Удалите прежнюю запись и введите нужное значение.

Нажмите иконку 🛑 для возврата в меню устройств защиты.

Описание функциональных иконок:

💼 In

- + D Добавление характеристики для выбранного номинального тока устройства защиты.
 - Удаление характеристики для выбранного номинального тока устройства защиты.
- 🚯 🖿 Вставка заданного значения для записи во всей строке или таблице.
 - Характеристика неактивна.
 - Характеристика активна.
- 🕂 🛛 Добавление имени характеристики.
- 🖉 🔹 Редактирование названия активной характеристики.
- 💼 Удаление активной характеристики.
- Возврат к предыдущему экрану.
- 👚 Переход к главному меню.
 - Отмена изменений.
- Подтверждение изменений.

b. <u>Добавление устройств защиты</u>

В столбце Производитель выбрать иконку 🕂;

Нажать на поле ввода имени;

Ввести имя на экранной клавиатуре.

\sim	"KƏA3"											<u>Φ</u> γ			
(2)	Ë ! " ë 1 2	№ 3	: 4	% 5	; 6	? 7	* 8	(9)	[-	+ =		-	×	
	Tab	Й	ц	У	К	E	н	Г	W	щ	3	×	Ь	(
	Caps Lock	Φ	ы	В	A	п	P	0	Л	Д	ж	Э	4	-	
	Shift	я	ч	С	M	И	T	Ь	Б	ю			*		
												+	+		
	12:13:42 20	22-07-2	1				3.6 GB	свобој	цно		2	2%			
	о [©] Настройки	параме	тров пр	едохр	аните	пей								0	-
	Производитель Редактировать текст										вы				
	"КЭАЗ"									Р					
(3)	BA 47-29								БС						
\bigcirc										BB					
			_	-			•0		0 OTM	2448					
	+				+		-			-	+				0
	+										1810		Ħ	1	
	•					-									
	() 12:11:38 20 Настройки	22-07-2	1 1008 ND	едохр	аните	пей	3.6 GB	свобо,	дно	al		22 %		0	
	Произво	дитель		1		7	ип		1		Хара	ктерис	тика	Ť	Вы,
	"K943"	T			Выб	op xapi	ктерис	тики							бүд
\bigcirc					,	(аракті	ристи	зи							
4				C											B c
						•0	K (3 Otm	ена						
	+	9 0	â		+		1	Ŵ			+		ŵ		Вы
	-									1		1748	-	S.	

Описание функциональных иконок:

- Запись не активна
- 🖊 Запись активна
- 🕂 Добавление новой записи
- 🖉 Изменение имени активной записи
- 面 🛛 Удаление активной записи
- 🛑 Возврат к предыдущему экрану
- 👚 Возврат в главное меню
- Отмена изменений.
- Подтверждение изменений.

2.3 СВЯЗЬ

2.3.1 Соединение по USB

Встроенный в измеритель порт USB типа В используется для подключения измерителя к компьютеру с целью считывания данных, записанных в его память. Данные можно загрузить и прочитать с помощью программного обеспечения, поставляемого производителем:

<u>Функции символов:</u>

- Отмена изменений.
- Подтверждение изменений.

Выделите Производителя.

В столбце Тип выбрать 🕂.

Введите тип устройства защиты, аналогично шагу ①.

Выделить тип защитного устройства, для которого будет вводится характеристика.

В столбце Характеристика выбрать 🕂 .

Выбрать из списка необходимую характеристику.

- Sonel Analysis программа позволяет работать с регистратором измерителя и всеми анализаторами серии PQM и TKM. Она позволяет считывать данные из регистратора и анализировать данные.
- Sonel Reader программа используется для считывания записанных данных из памяти измерителя. Кроме того, она позволяет передавать данные в персональный компьютер, сохранять их в популярных форматах и выводить на печать.

Подробную информацию можно получить у производителя и дистрибьюторов.

) Подключить кабель к порту USB компьютера и разъему USB типа В в измерителе.

Актуальные версии программного обеспечения можно найти на веб-сайте производителя.

2.3.2 Подключение к сети Wi-Fi

- Перейти к разделу Настройки
 Параметры связи
 Wi-Fi.
- (2) Включить Wi-Fi (на верхней панели должен появиться значок состояния Wi-Fi).

З Выбрать в списке сеть с доступом в Internet. Дважды нажмите на неё и если она защищена, то введите пароль. Чтобы выйти из сети, также дважды нажмите на неё.

Выбрать **Ок** и убедиться, что измеритель подключился к сети. Значок статуса Wi-Fi показывает уровень сигнала.

2.3.3 Параметры E-Mail

- Перейти к разделу Настройки
 Параметры связи
 Параметры E-Mail.
- Заполните поля на экране:
 - параметры исходящей почты;
 - о адрес почтового ящика получателя.
- Нажмите кнопку **TECT**, чтобы отправить тестовое письмо по E-Mail.

Функция работает с выбранными операторами электронной почты. Список поставщиков данной услуги можно найти на веб-сайте производителя.

2.4 ОБНОВЛЕНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Перед обновлением прогаммного обеспечения необходимо зарядить аккумулятор. Во время обновления нельзя выключать измеритель.

2.4.1 Обновление по USB

(1) Скачать файл обновления с сайта производителя (http://www.sonel.ru/).

Записать файл на флэшку USB. Носитель памяти должен иметь файловую систему в формате FAT32.

3) Выбрать Настройки > Обновление, чтобы перейти к меню обновления.

- Вставить флэшку USB в разъем USB типа А в измерителе. Появится информационный экран.
- Для запуска процесса обновления, выберите **Ок** в информационном окне.

В качестве альтернативы можно выбрать опцию **Обновить по Wi-Fi**. Затем следует действовать в соответствии с гл.2.4.2.

2.4.2 Обновление по Wi-Fi

(1) Подключиться к сети Wi-Fi в соответствии с гл.2.3.2.

Выбрать одно из действий ниже:

- Перейти к пункту меню Настройки 🕨 Обновление и выбрать Обновить по Wi-Fi.
- Перезагрузить измеритель.

Прибор автоматически проверит, доступно ли обновление программного обеспечения. Если есть новая версия, то отобразится окно с просьбой подтвердить обновление.

(4) Для запуска процесса обновления, выберите **Ок** в информационном окне.

(2)

Меры безопасности внутри некоторых сетей могут привести к тому, что измеритель не сможет подключиться к серверу обновлений производителя – появится сообщение **Обновление не может быть выполнено по Wi-Fi...**

2.5 РЕГИОНАЛЬНЫЕ НАСТРОЙКИ

	 ① 11:25:46 2018-02-26 ① Ustawienia regionalne 			¹⁰ 100 %
1		Język interfejsu Polski		
		Polski Español English		
	+	÷	È.	đ

- Выбрать Настройки > Региональные настройки, чтобы перейти в меню выбора языка.
- Раскрыть список выбора языков.
- Выбрать нужный язык.

Описание функциональных иконок:

 возврат к предыдущему экрану (может появиться запрос о сохранении или отмене

изменения)

🔚 сохранение изменений

👚 возврат в главное меню

Если изменения не сохранены, но выбрана иконка **(**возврат к предыдущему экрану), то появится запрос подтверждения выбора.

Описание функциональных клавиш: Да – подтверждение выбора Нет – отмена выбора Отмена – отмена действия

3 ИЗМЕРЕНИЯ

В меню Измерения доступны следующие исследования.

III. Низковольтные измерения LV:

- Сопротивление петли короткого замыкания (Z_{L-N, L-L}, Z_{L-PE}, Z_{L-PE[RCD]} с УЗО);
- Падение напряжения ΔU;
- Сопротивление изоляции **R**_{Iso};
- Проверка дифференциального выключателя (ток срабатывания УЗО RCD I_A, время срабатывания УЗО - RCD t_A, измерения в автоматическом режиме);
- Сопротивление **R**_x;
- Непрерывность соединений **R**сомт;
- Последовательность чередования фаз 1-2-3;
- Направление вращения ротора электродвигателя U-V-W;
- Сопротивление заземления **R**_E;
- Удельное сопротивление грунта Ωm;
- Освещенность Lux.

Во время измерений (петля короткого замыкания, УЗО) нельзя прикасаться к доступным и прочим токопроводящим частям тестируемой установки.

Внимательно ознакомьтесь с содержанием этой главы. В ней описаны схемы измерений, методы выполнения измерений и основные правила интерпретации результатов;

Во время длительного измерения отображается индикатор хода выполнения;

- Результат последнего измерения отображается, пока не произойдет:
 - Запуск следующего измерения;
 - Изменение параметров измерения;
 - Изменение функции измерения;
 - Выключение измерителя.

Последнеее измерение можно снова вызвать на экран с помощью иконки [].

3.1 ДИАГНОСТИКА, ПРОВОДИМАЯ ИЗМЕРИТЕЛЕМ – ЛИМИТЫ

Измеритель может оценить, находится ли результат измерения в допустимых границах для выбранного устройства защиты или превысил предельные значения. С этой целью можно задать лимит, т.е. предельное значение, которое не должен превысить результат. Это возможно для всех измерительных функций <u>за исключением</u>:

- Измерений параметров УЗО (I_A, t_A), для которых лимиты включены постоянно;
- Измерений сопротивления петли короткого замыкания, где лимит устанавливается косвенно, через выбор соответствующей токовой защиты, для которой назначены стандартные предельные значения;
- Регистратора.

Для измерений сопротивления изоляции и освещённости лимит является **минимальным** значением. Для измерений сопротивления петли короткого замыкания, сопротивления заземляющего устройства, а также сопротивления защитного провода и системы уравнивания потенциалов – **максимальное** значение.

Лимиты устанавливаются в данном меню измерений. После каждого измерения прибор отображает символы:

- 📀 результат находится в границах, определённых лимитом.
- 😢 результат не находится в границах, определённых лимитом.

нет возможности оценить правильность результата. Символ отображается в частности, когда ещё нет результата, например, во время измерения или пока не было выполнено никаких измерений.

Способ установки лимитов, описан в главах, относящихся к данным измерениям.

3.2 ИЗМЕРЕНИЕ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ И ЧАСТОТЫ

Прибор измеряет и показывает значение переменного напряжения и частоту сети при выбранных измерительных функциях, согласно таблице ниже:

Функция измерения	U	f
Z _{L-N}	•	•
Z _{L-PE}	•	•
Z _{L-PE[RCD]}	•	•
R _{ISO}	•	
RCD I _A	•	•
RCD t _A	•	•
R _x		
RCONT		
Последовательность фаз	•	
Направление вращение двигателя	•	
Сопротивление заземления R _E	•	
Удельное сопротивление грунта	•	
Освещенность		
Регистратор	•	•

3.3 ПРОВЕРКА ПРАВИЛЬНОСТИ ПОДКЛЮЧЕНИЯ ЗАЩИТНОГО ПРОВОДА

После подключения измерителя, как на рисунке, прикоснитесь к сенсорному электроду и подождите примерно 1 сек. Если на проводе РЕ будет обнаружен потенциал, то:

- Отображается надпись **РЕ** (ошибка в схеме сети, провод РЕ подключен к фазному проводу), а также...
- ...измеритель генерирует непрерывный звуковой сигнал.

Такая возможность доступна для всех функций измерения, относящихся к выключателям УЗО и петле короткого замыкания, кроме измерения Z_{I-N, I-I}.

При обнаружении присутствия фазного напряжения на защитном проводе РЕ необходимо немедленно остановить измерение и исправить ошибку в схеме.

Убедитесь в том, что во время измерения вы стоите на токопроводящем полу. Изолированный пол может привести к ошибочному результату проверки.

Если напряжение на проводе РЕ превысит допустимое значение (примерно 50 В), то измеритель сигнализирует об этом факте.

Если в гл.2.2 выбрана сеть IT, то сенсорный электрод будет не активен.

3.4 ПАРАМЕТРЫ ПЕТЛИ КОРОТКОГО ЗАМЫКАНИЯ

Если в тестируемой сети есть дифференциальные выключатели (УЗО), то на время процесса измерения сопротивления их необходимо шунтировать. Однако, необходимо помнить, что этот способ вносит изменения в измеряемую цепь и результаты могут иметь минимальное отличие от фактических.

Каждый раз после измерения необходимо удалить из схемы изменения, выполненные на время измерения и проверить работу дифференциального выключателя УЗО.

Замечания, приведённые выше, не касаются измерений сопротивления петли короткого замыкания при использовании функции **Z**_{L-PE [RCD]}.

Измерения сопротивления петли короткого частотными замыкания за преобразователями (инверторами) неэффективны, а результаты измерений неправдоподобны. Это является следствием изменений внутреннего сопротивления схемы инвертора во время его работы. Не следует выполнять измерения сопротивления петли короткого замыкания непосредственно после инверторов.

3.4.1 Параметры измерений

Выбрать пункты Z_{L-N, L-L}, Z_{L-PE} или Z_{L-PE[RCD]}.

L-N!

L= 5 m 🔻

N = 1.2 m

 $Z = --- \Omega$

U = 0.3 V

f = 0,0 Hz

🖹 | 📶 | 100 % 💷 🖶 Ϋ

I_k = --- A

l_k (Un)

I_A = 50,0 A

Ĥ

(10:43:09 2018-07-23

-

(3)

Достоверность измерений зависит от ввода правильной длины измерительных проводов.

Если к измерителю не подключен адаптер типа WS, то в меню будут доступны значения длины стандартных измерительных проводов от производителя.

- В такой ситуации нажмите поле раскрывающегося списка.
- Выбрать необходимую длину измерительных проводов.

Ожидаемый ток короткого замыкания **I**_k может быть рассчитан на основании одной из двух величин:

- о номинального напряжения сети **U**_n,
- о измеренного напряжения **U**₀.

Физический смысл параметра представлен в гл.3.4.5.

- Нажмите поле раскрывающегося списка;
- Выберите нужное значение.

Результат измерения можно сравнить с критерием допустимого сопротивления петли короткого замыкания **Z**_{sdop}, определённого на основе параметров защиты измеряемой цепи:

- о характеристика;
- о номинальный ток.
- Нажмите поле с типом устройства защиты.

Параметры на выбор:

- Производитель:
 - ОБЩИЙ отсутствует конкретный производитель.
 - производитель указан в памяти измерителя (гл.2.2.1.).

• Тип:

- ОБЩИЙ отсутствует определённый тип.
- типы указаны в памяти измерителя (гл.2.2.1.).
- Время-токовая характеристика;
- Номинальный ток I_N;
- Допустимое время срабатывания ;
- Лимит лимит, указанный в стандарте ГОСТ Р 50571.16-2019:
 - - І_а ток из таблицы стандарта без коррекции.
 - 2/32 І_а ток увеличен на значение 0,5І_а.

3.4.2 Параметры петли короткого замыкания в цепи L-N и L-L

Подключить измерительные провода согласно рисунку:

- а или b для измерения в цепи L-N;
 - с для измерения в цепи L-L.

(4) Введите параметры измерения в соответствии с гл.

START

5

Чтобы выполнить измерение нажмите кнопку СТАРТ.

Считать результат:

Z_{L-N} – основной результат.

I_k – ожидаемый ток короткого замыкания вместе с сигнализацией выполнения допустимых критериев петли КЗ (гл.3.4.1, шаг ⁽⁶⁾):

- 🕑 выполнен.
- 😢 невыполнен.
- 😔 оценка невозможна.

I_A – ток, обеспечивающий автоматическое срабатывание устройства защиты за требуемое время.

После выбора панели <a>с правой стороны экрана откроется меню с дополнительными результатами

измерения.

R – активное сопротивление измеряемой цепи
 X_L – реактивное сопротивление измеряемой цепи
 U_{L-N} – напряжение относительно нейтрального провода
 f – частота

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку :

Выполнение большого числа измерений за короткие промежутки времени приводит в кому, что внутри измерителя выделяется много тепла. В связи с этим, корпус прибора может нагреваться. Это **нормальное** явление. Кроме того, измеритель имеет защиту от достижения слишком высокой температуры.

После серии из примерно 15 измерений петли короткого замыкания необходимо подождать, пока прибор не охладится. Это ограничение вызвано большим током измерения и многофункциональностью прибора.

Минимальный **промежуток времени** между следующими измерениями составляет **5** секунд. Отображение сообщения **GOTOWY!** информирует о готовности к выполнению следующего измерения. До момента появления данной надписи, измеритель не может выполнять измерения.

GOTOWY!	Измеритель готов к выполнению измерения.						
W ТОК	Процесс измерения.						
L-N!	Недопустимое напряжение U _{L-N} для выполнения измерения.						
L-PE!	Недопустимое напряжение U _{L-PE} для выполнения измерения.						
N-PE!	Напряжение U _{N-PE} превышает допустимое значение 50 В.						
L ↔ N	Фаза подключена к клемме N вместо L (например, заменены местами L и N в сетевой розетке).						
TEMPERATURA!	Превышена температура внутри измерителя.						
f!	Частота сети находится за пределами диапазона 4565 Гц.						
BŁĄD!	Ошибка во время выполнения измерения. Отображение правильного результата невозможно.						
Повреждение цепи короткого замыкания	Измеритель необходимо отдать в сервисную службу.						

Дополнительная информация, отображаемая измерителем:

<mark>U>500V!</mark> и непрерывный звуковой сигнал	На измерительных разъемах перед измерением напряжение превышает 500 В.
NADICOLE	Напряжение на тестируемом объекте находится за пределами границ,
NAPIĘCIE:	соответствующих заданному номинальному напряжению сети U _n (гл.2.2).
LINAITE	Слишком низкое значение ожидаемого тока короткого замыкания I _k для
	заданного устройства зашиты и времени его срабатывания.

3.4.3 Параметры петли короткого замыкания в цепи L-PE

(1) Подключить измерительные провода согласно Рис. 3.1 или Рис. 3.2.

Рис. 3.1 Измерение в цепи L-PE

Рис. 3.2 Проверка эффективности защиты от поражения током на корпусе устройства в случае: (а) сети TN или (b) сети TT

2

Выбрать пункт **Z**_{L-PE}

💬 – оценка невозможна.

І_а – ток, обеспечивающий автоматическое срабатывание устройства защиты за требуемое время.

После выбора панели **с** правой стороны экрана откроется меню с дополнительными результатами измерения:

R – активное сопротивление измеряемой цепи.

Х_L – реактивное сопротивление измеряемой цепи.

U_{L-PE} – напряжение относительно защитного провода.

f — частота.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку 😭.

Двухпроводное измерение недоступно для адаптера UNI-Schuko.

f = 50.0 Hz

11:06:51 2018-07-23

 $Z_{1-PF} = 2,164$

UL ## = 239,8 V

f = 50,0 Hz

GOTOWY!

0

PE = 1,2 m

(6)

PE = 1,2 m

2018-07-23 11:06:34

 \oslash

Ik = 106,3 A

IA = 50,0 A

6) - B10

L= 1,2m ¥ 4 (Un) *

👀 🗊 🕫 🛙 🔊

1

= 2,162 0

= 0.096 0

240,0 \

= 50.0 Hz

t

Выполнение большого числа измерений за короткие промежутки времени приводит в кому, что внутри измерителя выделяется много тепла. В связи с этим, корпус прибора может нагреваться. Это **нормальное** явление. Кроме того, измеритель имеет защиту от достижения слишком высокой температуры.

После серии из примерно 15 измерений петли короткого замыкания необходимо подождать, пока прибор не охладится. Это ограничение вызвано большим током измерения и многофункциональностью прибора.

Минимальный **промежуток времени** между следующими измерениями составляет **5** секунд. Отображение сообщения **GOTOWY!** информирует о готовности к выполнению следующего измерения. До момента появления данной надписи, измеритель не может выполнять измерения.

3.4.4 Сопротивление петли КЗ в цепи L-PE, защищенной УЗО

(1) Подключить измерительные провода согласно Рис. 3.3, Рис. 3.4 или Рис. 3.5.

Рис. 3.4 Измерение в цепи TT

Рис. 3.5 Измерение в цепи TN-C-S

2		Z _{L-PE}		Выбрать пункт Z _{L-PE[RCD]} .
3	© 11:08:44 2018-07-23	ww - Ω	100 %	Появится экран измерения. <u>Текущие показания:</u> U _{L-PE} — актуальное напряжение между фазным
	U _{L:PE} = 239,9 V f = 50,0 Hz	L = 1,2 m	l _k (Un) ▼ ⊗∑⇒=B10	защитным проводом. f – актуальная частота на объекте измерения.

(4) Введите параметры измерения согласно гл.3.4.1.

Чтобы выполнить измерение нажмите кнопку СТАРТ.

Считать результат:

Z_{L-PE} – основной результат.

I_k – ожидаемый ток короткого замыкания вместе с сигнализацией выполнения допустимых критериев петли КЗ (гл.3.4.1., шаг (6)):

- 🕗 выполнен.
- 😣 невыполнен.
- 💮 оценка невозможна.

І_а − ток, обеспечивающий автоматическое срабатывание устройства защиты за требуемое время.

После выбора панели **с** правой стороны экрана откроется меню с дополнительными результатами измерения:

R – активное сопротивление измеряемой цепи. **X**_L – реактивное сопротивление измеряемой цепи. **U**_{L-PE} – напряжение относительно защитного провода. **f** – частота.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку], чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку [].

Измерение длится максимум несколько секунд. Его можно прервать кнопкой 📰 💶.

В сетях, в которых установлены дифференциальные выключатели с номинальным током 30 мА, может так случиться, что сумма тока утечки и измерительного тока вызовет срабатывание УЗО. Необходимо тогда попытаться уменьшить ток утечки тестируемой цепи (например, отключить потребителей энергии).

Функция действует для дифференциальных выключателей УЗО с номинальным током ≥ 30 мА.

Выполнение большого числа измерений за короткие промежутки времени приводит в кому, что внутри измерителя выделяется много тепла. В связи с этим, корпус прибора может нагреваться. Это **нормальное** явление. Кроме того, измеритель имеет защиту от достижения слишком высокой температуры.

После серии из примерно 15 измерений петли короткого замыкания необходимо подождать, пока прибор не охладится. Это ограничение вызвано большим током измерения и многофункциональностью прибора.

Минимальный **промежуток времени** между следующими измерениями составляет **5** секунд. Отображение сообщения **GOTOWY!** информирует о готовности к выполнению следующего измерения. До момента появления данной надписи, измеритель не может выполнять измерения.

3.4.5 Ожидаемый ток короткого замыкания

Прибор измеряет сопротивление петли короткого замыкания Z_s, а отображаемый ток короткого замыкания рассчитывается по формуле:

$$I_k = \frac{U}{Z_s}$$

где:

7

Z_s – измеренное сопротивление,

U – напряжение, зависящее от номинального напряжения сети U_n (гл.3.4.1 пункт (4)):

I _k (U _n)	$U = U_n$
I _k (U ₀)	U = U ₀ для U ₀ < U _n
	U = U _n для U ₀ ≥ U _n

где:

U_n – номинальное напряжение сети,

U₀ – напряжение, измеренное прибором.

На основании выбранного номинального напряжения U_n (гл.2.2) измеритель автоматически распознает измерение при фазном или линейном напряжении и учитывает это в расчётах.

В случае, когда напряжение измеряемой сети находится за пределами допустимого диапазона, прибор будет не в состоянии определить правильное номинальное напряжение для расчёта тока короткого замыкания. В таком случае вместо значения тока короткого замыкания будут отображаться чёрточки — —. На Рис. 3.6 показаны диапазоны напряжений, для которых рассчитан ток короткого замыкания.

Рис. 3.6 Диапазоны измерительного напряжения

3.4.6 Измерение сопротивления петли короткого замыкания в сети IT

Перед выполнением измерений в меню **Параметры измерений** необходимо выбрать соответствующий тип сети (гл.2.2.).

После выбора сети типа IT функция сенсорного электрода неактивна.

В случае попытки сделать измерение **Z**_{L-PE} и **Z**_{L-PE[RCD]} появится сообщение о невозможности выполнения измерения.

Способ подключения прибора к сети показан на Рис. 3.7.

Способы проведения измерений петли короткого замыкания, описаны в гл.3.4.2. Рабочий диапазон напряжений: 95... 440 В.

Рис. 3.7 Измерение в цепи IT

Падение напряжения

Функция определяет падение напряжения между двумя точками тестируемой сети по выбору пользователя. Метод основан на измерениях сопротивления петли короткого замыкания L-N в этих точках. В стандартной сети обычно измеряют падение напряжения между розеткой и распределительным щитком (контрольная точка).

Падение напряжения рассчитывается по формуле:

$$\Delta U = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100\%$$

где:

Z – сопротивление контура короткого замыкания в целевой точке,

Z_{REF} – сопротивление петли короткого замыкания в опорной точке,

I_N — номинальный ток защиты,

U_N – номинальное напряжение сети.

Выбрать пункт **ΔU**.

Выбрать настройку **Zref= ---,** чтобы обнулить предыдущий результат, если это не было сделано раньше.

Ввести **лимит** падения напряжения **ΔU**_{MAX}.

Ввести **тип устройства защиты**, установленного в данной цепи.

 U_{N}

Подключить измеритель к опорной точке, как при измерении Z_{L-N}.

Нажать кнопку СТАРТ.

Изменить настройку с Zref на Z.

Подключить измеритель к целевой точке, как при измерении Z_{L-N}.

Нажать кнопку СТАРТ.

Считать результат:

ΔU – основной результат вместе с сигнализацией удовлетворяет **критерию ΔU**_{MAX} и имеет:

зеленый цвет:

 $\Delta U \leq \Delta U_{MAX}$

красный цвет:

 $\Delta U > \Delta U_{MAX}$

I_k – ожидаемый ток короткого замыкания.

После выбора панели **с** правой стороны экрана откроется меню с дополнительными результатами измерения:

R – активное сопротивление измеряемой цепи.

Х_L – реактивное сопротивление измеряемой цепи.

U_{L-№} — напряжение относительно нейтрального провода.

f – частота.

I_A – ток срабатывания защиты.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание
 управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку .

4 ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ

4.1 ПАРАМЕТРЫ ИЗМЕРЕНИЙ

Чтобы установить лимит сопротивления, выберите Лимит.

4.1.1 Измерение сопротивления заземления трёхполюсным методом (R_E3P)

Основным видом измерения сопротивления заземления является трёхпроводный метод.

Отключить тестируемый заземлитель от сети объекта

(1)

(2)

- Токовый электрод вбить в землю и соединить с гнездом Н измерителя. •
- Электрод напряжения вбить в землю и соединить с гнездом S измерителя.
- Тестируемый заземлитель соединить с гнездом Е измерителя. •
- Рекомендуется, чтобы тестируемый заземлитель, а также электроды Н и S были расположены в одну линию и на соответствующих расстояниях, согласно правилам измерения заземлений.

В меню измерения выбрать опцию ЗР.

Сделать остальные настройки в соответствии с гл.4.1.

Измеритель готов к измерению.

Текущие показания:

U – напряжение помехи, присутствующее сейчас на объекте.

Лимиты:

R_{Е МАХ} – актуальный заданный лимит сопротивления заземления.

Для запуска измерения нажмите кнопку СТАРТ.

() 13:14:57 2018-02-26

Индикаторы выполнения лимитов (гл.4.1, шаг (6)):

- результат в заданном лимите.
- 😢 результат вне заданного лимита.
- 💮 оценка невозможна.

После выбора панели < с правой стороны экрана откроется меню с дополнительными результатами измерения:

R_н – сопротивление токового электрода.

R_s⁻сопротивление электрода напряжения.

δ – дополнительная погрешность, внесённая сопротивлением электродов.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку .

Повторить шаги (2)(5)(6) для двух дополнительных положений электрода напряжения **S**:

отдаляя на некоторое расстояние от измеряемого заземления,

приближая на такое же расстояние к измеряемому заземлению.

Цель процедуры - подтвердить, что электрод **S** вбит в землю в точке нулевого потенциала. Если это так, то **разница значений** R_E между основным и каждым дополнительным измерением **не должна** превышать 3%.

Если результаты измерений R_E отличаются друг от друга больше, чем на 3%, то необходимо значительно **увеличить расстояние** от токового электрода до измеряемого заземления и повторить измерения.

Измерение сопротивления заземления можно выполнить, если напряжение помех не превышает 24 В. Напряжение помех измеряется до уровня 100 В.

Напряжение более 50 В сигнализируется, как опасное. Нельзя подключать измеритель к напряжению выше, чем 100 В.

Рекомендуется, чтобы тестируемый **заземлитель**, а также электроды **H** и **S** были расположены в одну линию. Это не всегда возможно из-за различных условий на местности. На сайте http://www.sonel.ru/ и в отраслевой литературе описаны конкретные случаи расположения зондов.

Следует обратить особое внимание на качество соединения тестируемого объекта с измерительным проводом – место контакта должно быть очищено от краски, ржавчины и т.д.

/{

Если **сопротивление** измерительных **зондов слишком большое**, то измерение заземлителя R_E будет иметь **дополнительную погрешность**. Особенно большая погрешность измерения появляется, если значение сопротивления невелико, а у зондов слабый контакт с грунтом (такая ситуация часто имеет место, когда заземление выполнено хорошо, но верхняя часть почвы сухая и слабо проводит ток). Тогда отношение сопротивления зонда к сопротивлению измеряемого заземления очень большое, а также зависящая от этого погрешность измерения **δ**.

Для уменьшения погрешности измерения **б**, можно улучшить контакт зонда с грунтом, например, путём:

• Увлажнение водой места вбивания зонда;

- Установки зонда в другом месте;
- Применения зонда длиной 80 см.

Также необходимо проверить измерительные провода, что у них:

- Не повреждена изоляция,
- Контакты провод разъём «банан» зонд не имеют коррозии или зазоров.

В большинстве случаев достигнутая точность измерения вполне достаточна, однако, всегда необходимо принимать во внимание значение погрешности, которую имеет измерение.

GOTOWY!	Измеритель готов к выполнению измерения.	
W ТОКU	Процесс измерения.	
NAPIĘCIE!	Слишком высокое напряжение на гнездах измерителя.	
H!	Обрыв в цепи токового зонда.	
S!	Обрыв в цепи зонда напряжения.	
R _E >1,99kΩ	Превышен измерительный диапазон.	
SZUM!	Слишком маленькое значение отношения сигнал/шум (слишком большой сигнал помехи).	
LIMIT!	Ошибка от сопротивления электрода > 30% (для расчета погрешности взяты измеренные значения).	
	Обрыв в цепи измерения или сопротивление измерительных зондов больше, чем 60 кОм.	

Дополнительная информация, отображаемая измерителем:

4.1.2 Измерение сопротивления заземления четырёхпроводным методом (R_E4P)

Четырехполюсный метод рекомендуется к использованию при измерении сопротивления заземления очень маленькой величины. Он позволяет исключить влияние сопротивления измерительных проводов на результат измерения. Метод также подходит для определения удельного сопротивления грунта, однако рекомендуется, чтобы для этого измерения была использована специальная функция (гл.4.2).

Отключите тестируемый заземлитель от сети объекта

1

- Токовый электрод вбить в землю и соединить с гнездом Н измерителя; •
- Электрод напряжения вбить в землю и соединить с гнездом S измерителя; •
- Тестируемый заземлитель соединить с гнездом Е измерителя; •

TAR

(2)

- Гнездо ES соединить с тестируемым заземлителем ниже провода E; •
- Рекомендуется, чтобы тестируемый заземлитель, а также электроды Н и S были расположены в одну линию и на соответствующих расстояниях, согласно правилам измерения заземлений.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание (7) управлением памяти содержится в гл.7.1.3.

Можно снова вызвать на экран последнее измерение, нажимая иконку [...]

Повторить шаги (2)(5)(6) для двух дополнительных положений электрода напряжения **S**:

отдаляя на некоторое расстояние от измеряемого заземления,

приближая на такое же расстояние к измеряемому заземлению.

Цель процедуры - подтвердить, что электрод **S** вбит в землю в точке нулевого потенциала. Если это так, то **разница значений** R_E между основным и каждым дополнительным измерением **не должна** превышать 3%.

Если результаты измерений R_E отличаются друг от друга больше, чем на 3%, то необходимо значительно **увеличить расстояние** от токового электрода до измеряемого заземления и повторить измерения.

Измерение сопротивления заземления можно выполнить, если напряжение помех не превышает 24 В. Напряжение помех измеряется до уровня 100 В.

Напряжение более 50 В сигнализируется, как опасное. Нельзя подключать измеритель к напряжению выше, чем 100 В.

4

Рекомендуется, чтобы тестируемый заземлитель, а также электроды Н и S были расположены в одну линию. Это не всегда возможно из-за различных условий на

местности. На сайте http://www.sonel.ru/ и в отраслевой литературе описаны конкретные случаи расположения зондов.

Следует обратить особое внимание на качество соединения тестируемого объекта с измерительным проводом – место контакта должно быть очищено от краски, ржавчины и т.д.

Если сопротивление измерительных зондов слишком большое, то измерение заземлителя R_E будет иметь дополнительную погрешность. Особенно большая погрешность измерения появляется, если значение сопротивления невелико, а у зондов слабый контакт с грунтом (такая ситуация часто имеет место, когда заземление выполнено хорошо, но верхняя часть почвы сухая и слабо проводит ток). Тогда отношение сопротивления зонда к сопротивлению измеряемого заземления очень большое, а также зависящая от этого погрешность измерения **б**. В соответствии с формулами из гл.9.4.4, могут быть выполнены расчеты, которые позволят оценить влияние условий измерения.

Для уменьшения погрешности измерения **б**, можно улучшить контакт зонда с грунтом, например, путём:

- Увлажнение водой места вбивания зонда;
- Установки зонда в другом месте;
- Применения зонда длиной 80 см.

Также необходимо проверить измерительные провода, что у них:

- Не повреждена изоляция;
- Контакты провод разъем «банан» зонд не имеют коррозии или зазоров.

В большинстве случаев достигнутая точность измерения вполне достаточна, однако, всегда необходимо принимать во внимание значение погрешности, которую имеет измерение.

GOTOWY!	Измеритель готов к выполнению измерения.			
W ТОКU	Процесс измерения.			
NAPIĘCIE!	Слишком высокое напряжение на гнездах измерителя.			
H!	Обрыв в цепи токового зонда.			
S!	Обрыв в цепи зонда напряжения.			
RE>1,99kΩ	Превышен измерительный диапазон.			
SZUM!	Слишком маленькое значение отношения сигнал/шум (слишком большой сигнал помехи).			
LIMIT!	Ошибка от сопротивления электрода > 30% (для расчета погрешности взяты измеренные значения).			
	Обрыв в цепи измерения или сопротивление измерительных зондов больше, чем 60 кОм.			

Дополнительная информация, отображаемая измерителем:

4.1.3 Измерение сопротивления заземления трёхполюсным методом с дополнительными клещами (R_E3P+клещи)

- Токовый электрод вбить в землю и соединить с гнездом Н измерителя.
- Электрод напряжения вбить в землю и соединить с гнездом S измерителя.
- Тестируемый заземлитель соединить с гнездом Е измерителя.
- Рекомендуется, чтобы тестируемый заземлитель, а также электроды **H** и **S** были расположены в одну линию и на соответствующих расстояниях, согласно правилам измерения заземлений.
- Обхватите клещами тестируемый заземлитель ниже места подключения провода Е.
- Стрелка на клещах может быть ориентирована в любом направлении.

(1)

В меню измерения выбрать опцию ЗР+клещи.

Сделать остальные настройки в соответствии с гл.4.1.

Измеритель готов к измерению.

Текущие показания:

U – напряжение помехи, присутствующее сейчас на объекте.

I – ток помехи, протекающий сейчас через объект.

<u>Лимиты:</u>

R_{E MAX} – актуальный заданный лимит сопротивления заземления.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание (6) управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку ().

Повторить шаги (2)(5)(6) для двух дополнительных положений электрода напряжения **S**:

отдаляя на некоторое расстояние от измеряемого заземления,

приближая на такое же расстояние к измеряемому заземлению.

Цель процедуры - подтвердить, что электрод **S** вбит в землю в точке нулевого потенциала. Если это так, то **разница значений** R_E между основным и каждым дополнительным измерением **не должна** превышать 3%.

Если результаты измерений R_E отличаются друг от друга больше, чем на 3%, то необходимо значительно **увеличить расстояние** от токового электрода до измеряемого заземления и повторить измерения.

4

Измерение сопротивления заземления можно выполнить, если напряжение помех не превышает 24 В. Напряжение помех измеряется до уровня 100 В.

Напряжение более 50 В сигнализируется, как опасное. Нельзя подключать измеритель к напряжению выше, чем 100 В.

Рекомендуется, чтобы тестируемый **заземлитель**, а также электроды **H** и **S** были расположены в одну линию. Это не всегда возможно из-за различных условий на местности. На сайте http://www.sonel.ru/ и в отраслевой литературе описаны конкретные случаи расположения зондов.

Для измерения необходимо использовать токовые клещи С-3.

Максимальный ток помехи: 1 А.

Следует обратить особое внимание на качество соединения тестируемого объекта с измерительным проводом – место контакта должно быть очищено от краски, ржавчины и т.д.

Если **сопротивление** измерительных **зондов слишком большое**, то измерение заземлителя R_E будет иметь **дополнительную погрешность**. Особенно большая погрешность измерения появляется, если значение сопротивления невелико, а у зондов слабый контакт с грунтом (такая ситуация часто имеет место, когда заземление выполнено хорошо, но верхняя часть почвы сухая и слабо проводит ток). Тогда отношение сопротивления зонда к сопротивлению измеряемого заземления очень большое, а также зависящая от этого погрешность измерения. В соответствии с формулами из гл.9.4.4, могут быть выполнены расчёты, которые позволят оценить влияние условий измерения.

Для уменьшения погрешности измерения **δ,** можно улучшить контакт зонда с грунтом, например, путём:

- Увлажнение водой места вбивания зонда;
- Установки зонда в другом месте;
- Применения зонда длиной 80 см.

Также необходимо проверить измерительные провода, что у них:

- Не повреждена изоляция;
- Контакты провод разъем «банан» зонд не имеют коррозии или зазоров.

В большинстве случаев достигнутая точность измерения вполне достаточна, однако, всегда необходимо принимать во внимание значение погрешности, которую имеет измерение.

Калибровка, выполненная производителем, не учитывает сопротивление измерительных проводов. Результат, отображаемый измерителем, представляет собой сумму сопротивления измеряемого объекта и сопротивления проводов.

Дополнительная информ	лация, отображаемая	измерителем
-----------------------	---------------------	-------------

GOTOWY!	Измеритель готов к выполнению измерения.			
W ТОК	Процесс измерения.			
NAPIĘCIE!	Слишком высокое напряжение на гнездах измерителя.			
R _E >1,99kΩ	Превышен измерительный диапазон.			
SZUM!	Слишком маленькое значение отношения сигнал/шум (слишком большой сигнал помехи).			

LIMIT!	Ошибка от сопротивления электрода > 30% (для расчёта погрешности взяты измеренные значения).
	Обрыв в цепи измерения или сопротивление измерительных зондов больше, чем 60 кОм.
H!	Обрыв в цепи токового зонда.
S!	Обрыв в цепи зонда напряжения.
	Слишком маленький измерительный ток.
8	Обрыв в цепи токовых клещей.

4.1.4 Измерение сопротивления заземления методом двух клещей

Измерение с помощью двух клещей применяется там, где нет возможности использовать электроды вбивая в землю.

Метод двух клещей можно применять только при измерении **многоэлементных заземлений** (т.к. необходимо обеспечить обратный путь для измерительного тока).

В случае замкнутого периметра заземления (шаг (1) вариант (b)), метод позволяет **только определить непрерывность** соединения измеряемой точки заземлителя с остальной частью этого заземления.

- Передающие и приёмные клещи необходимо замкнуть на заземлении на расстоянии минимум 30 см друг от друга.
- Стрелка на клещах может быть ориентирована в любом направлении.
- Передающие клещи N-1 подключить к гнёздам Н и Е.
- Измерительные клещи С-З подключить к разъёму для клещей измерителя.

Нажмите иконку —, чтобы сохранить измерение в памяти прибора. Подробное описание (6) управлением памяти содержится в гл.7.1.3.Можно снова вызвать на экран последнее измерение, нажимая иконку [5].

Измерения могут быть выполнены при токе помехи, не превышающей значение 1 A RMS и частотой в соответствии с настройкой в подменю Параметры измерений (гл.2.2).

Для измерения следует применять передающие клещи N-1 и приёмные клещи C-3.

Если ток измерительных клещей слишком мал, измеритель отобразит соответствующее сообщение: «Ток, измеренный клещами, слишком мал. Измерение невозможно!».

Максимальный ток помехи: 1 А.

Дополнительная информация, отображаемая измерителем:

GOTOWY!	Измеритель готов к выполнению измерения.			
W ТОКU	Процесс измерения.			
R _ε >99,9Ω	Превышен измерительный диапазон.			
SZUM!	Слишком маленькое значение отношения сигнал/шум (слишком большой сигнал помехи).			
LIMIT!	Ошибка от сопротивления электрода > 30% (для расчета погрешности взяты измеренные значения).			
	Слишком маленький измерительный ток.			
8	Обрыв в цепи токовых клещей.			

4.2 УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ГРУНТА

Для измерений удельного сопротивления грунта – используемых как подготовка к выполнению проекта системы заземления, а также в геологии – предусмотрена отдельная функция: измерение удельного сопротивления грунта р. Эта функция метрологически идентична четырёхполюсному измерению сопротивления заземления, однако содержит дополнительную процедуру ввода расстояния между электродами. Результатом измерения является значение удельного сопротивления, автоматически рассчитываемое по формуле, используемой в измерительном методе Веннера (Wennera):

где:

 $\rho=2\pi LR_{\scriptscriptstyle E}$

L — расстояние между электродами (все расстояния должны быть одинаковы). R_E — измеренное сопротивление.

4.2.1 Параметры измерений

Выбрать пункт Удельное сопротивление грунта.

Нажать на раскрывающееся меню параметра **Un** (выбор напряжения измерения).

Отмена изменений и выход к предыдущему экрану.

Принятие изменений.

4.2.2 Основные элементы экрана

es: 0 0m - 99900 0m

Выбрать пункт Удельное сопротивление грунта.

Появится экран измерения.

Текущие показания:

U – напряжение помех.

<u>Лимиты:</u>

4 I #

р_{МАХ} – лимит удельного сопротивления грунта.

После выбора панели **с** правой стороны экрана откроется меню с дополнительными результатами измерения:

R_H – сопротивление токового электрода.

- **R**_s сопротивление электрода напряжения.
- δ дополнительная погрешность, внесенная

4.2.3 Измерение удельного сопротивления грунта

- Вбить в землю 4 зонда в одну линию и на одинаковом расстоянии;
- Подключить зонды к измерителю согласно рисунку выше.

Вызвать меню измерения.

Сделать остальные настройки в соответствии с гл.4.2.1.

Задать расстояние L между измерительными электродами:

🍙 стрелками 🔺 🔻 ,

(b) с клавиатуры, после нажатия поля с цифровым значением расстояния (диапазон 1...30 м).

Функции символов:

Отмена изменений и выход к предыдущему экрану.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание 7 управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку .

Измерение удельного сопротивления грунта можно выполнить, если напряжение помех не превышает 24 В. Напряжение помех измеряется до уровня 100 В.

Напряжение более 50 В сигнализируется, как опасное. Нельзя подключать измеритель к напряжению выше, чем 100 В.

В расчётах принимается, что расстояния между отдельными измерительными электродами равны (метод Веннера). Если это не так, то необходимо выполнить измерение сопротивления заземления четырёхполюсным методом и рассчитать значение удельного сопротивления по формуле:

 $\rho = 2\pi LR_E$

где:

L – расстояние между электродами.

R_E – измеренное сопротивление.

Следует обратить особое внимание на качество соединения тестируемого объекта с измерительным проводом – место контакта должно быть очищено от краски, ржавчины и т.д.

Если **сопротивление измерительных зондов слишком большое**, то измерение удельного сопротивления грунта будет иметь **дополнительную погрешность**. Особенно большая погрешность измерения появляется, если значение сопротивления невелико, а у зондов слабый контакт с грунтом. Тогда отношение сопротивления зонда к измеряемому сопротивлению, как компонент формулы для расчёта удельного сопротивления очень большое, как и зависящая от этого погрешность измерения. Тогда, в соответствии с формулами в гл.9.4.4, можно сделать расчёты, которые позволят оценить влияние условий измерения.

Для уменьшения погрешности измерения **δ**, можно улучшить контакт зонда с грунтом, например, путем:

- Увлажнение водой места вбивания зонда;
- Установки зонда в другом месте;
- Применения зонда длиной 80 см.

Также необходимо проверить измерительные провода, что у них:

- Не повреждена изоляция;
- Контакты провод разъем «банан» зонд не имеют коррозии или зазоров.

В большинстве случаев достигнутая точность измерения вполне достаточна, однако, всегда необходимо принимать во внимание значение погрешности, которую имеет измерение.

Дополнительная информация, отображаемая измерителем:

GOTOWY!	Измеритель готов к выполнению измерения.				
W ТОК	Процесс измерения.				
NAPIĘCIE!	Слишком высокое напряжение на гнездах измерителя.				
H!	Обрыв в цепи токового зонда.				
S!	Обрыв в цепи зонда напряжения.				
RE>1,99kΩ	Превышен измерительный диапазон.				
C711MI	Слишком маленькое значение отношения сигнал/шум (слишком				
SZOWI.	большой сигнал помехи).				
	Ошибка от сопротивления электрода > 30% (для расчета погрешности				
LIMIT	взяты измеренные значения).				

Обрыв в цепи измерения или сопротивление измерительных зондов больше, чем 60 кОм.

4.3 ПАРАМЕТРЫ ДИФФЕРЕНЦИАЛЬНЫХ ВЫКЛЮЧАТЕЛЕЙ УЗО

Измерение $U_B,\ R_E$ всегда осуществляется синусоидальным током 0,4 $I_{\boxtimes n}$ независимо от настроек формы сигнала и кратности $I_{\boxtimes n}.$

4.3.1 Параметры измерений

необходимое напряжение

Если в шаге (1) выбран режим RCD t_A, задайте ток срабатывания тестируемого УЗО.

Заданный ток является кратным номинальному дифференциальному току тестируемого

исправности тестируемого оценки зависит от его номинального дифференциального тока.

доступны значения номинального дифференциального тока выключателей УЗО.

- Нажать поле раскрывающегося списка;
- дифференциальный ток тестируемого УЗО.

можно выбрать форму тока для тестирования выключателя УЗО.

- Нажать поле раскрывающегося списка;
- Выбрать форму измерительного тока.

4.3.2 Ток срабатывания УЗО

(1) Подключить прибор к сети в соответствии с рисунком.

RCD IA

Выбрать пункт RCD IA.

(3) Ввести параметры измерения в соответствии с гл.4.3.1.

	() 11:32:03 201	8-07-23		itt. 🛛 🚿	100 % 💷 🛱	
	RCD: I _{Ae} U _{Be} R	ε			?	
			GOTOWY!			Измеритель
4	U _L = 25,0 V U	I _A = -	A	I _A =	1530 mA	<u>Текущие пол</u> U — напряж f — частота
	÷.	*	UL	÷.	ů	

готов к измерению.

казания:

кение между фазным проводом L и PE.

сети в тестируемой цепи.

Для запуска измерения нажмите кнопку СТАРТ.

Для отмены измерения, выберите на экране иконку e

Считать результат.

Оценка результата измерения:

зеленый цвет:

$$0,5 I_{\Delta n} < I_A \leq I_{\Delta n}$$

красный цвет:

После выбора панели < с правой стороны экрана откроется меню с дополнительными результатами измерения.

В зависимости от выбора, сделанного в гл.4.3.1., шаг (2) отображаются некоторые из параметров ниже: **U**_B – напряжение, измеренное на PE,

R_E – сопротивление PE,

t_A – время срабатывания УЗО при протекании тока, выключающего тестируемое УЗО.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку], чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку];

Измерение времени срабатывания t_{Ai} (t_A измеряется во время измерения I_A) **не доступно** для селективных УЗО.

Измерение времени срабатывания t_{Ai} не выполняется в соответствии с требованиям соответствующих стандартов (т.е. при номинальном токе выключателя УЗО l_{Dn}), а происходит при токе l_A, измеряемом и отображаемом во время его измерения. В большинстве случаев, где не требуется измерение строго по стандарту, его можно принять к сведению для оценки правильности функционирования защиты УЗО в определенной сети. Если измеренный ток l_A меньше l_{Dn} (наиболее распространенный случай), то время срабатывания t_{Ai} будет обычно больше времени срабатывания измеренного в функции t_A, которая измеряет время срабатывания при токе l_{Dn}:

$$I_A < I_{\Delta n} \Longrightarrow t_{Ai} > t_A$$

где:
 $t_{Ai} = f(I_{\Delta n})$

Поэтому, если время t_{Ai} правильное (не очень большое), то можно считать, что и время, измеренное в функции t_A также будет правильным (не будет дольше).

W ТОК	Процесс измерения.		
U _B >U _L !	Напряжение прикосновения превышает заданное пороговое значение U _L .		
GOTOWY!	Измеритель готов к выполнению измерения.		
L-N!	Недопустимое напряжение U _{L-N} для выполнения измерения.		
L-PE!	Недопустимое напряжение U _{L-PE} для выполнения измерения.		
N-PE!	Недопустимое напряжение U _{N-PE} для выполнения измерения.		
L ↔ N	Фаза подключена к клемме N вместо L (например, заменены местами L и N в сетевой розетке).		
f!	Частота сети находится за пределами диапазона 4565 Гц.		
PE!	Неправильное подключение провода РЕ.		
BŁĄD!	Ошибка измерения		
U>500V!	На измерительных гнездах напряжение перед измерением превышает 500 В.		

Дополнительная информация, отображаемая измерителем:

4.3.3 Время срабатывания УЗО

(1) Подключить прибор к сети в соответствии с рисунком.

2) отображаются некоторые из параметров ниже:
 U_B – напряжение, измеренное на РЕ.
 R_E – сопротивление РЕ.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку 🔜, чтобы сохранить измерение в памяти прибора. Подробное описание 7 управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку 😭.

W ТОКU	Процесс измерения.			
U _B >U _L !	Напряжение прикосновения превышает заданное пороговое значение U _L .			
Brak U _{L-N} !	Нет нейтрального провода, необходимого для I∆n постоянного тока и пульсирующего тока с постоянной составляющей.			
GOTOWY!	Измеритель готов к выполнению измерения.			
L-N!	Недопустимое напряжение U _{L-N} для выполнения измерения.			
L-PE!	Недопустимое напряжение U _{L-PE} для выполнения измерения.			
N-PE!	Недопустимое напряжение U _{N-PE} для выполнения измерения.			
L ↔ N	Фаза подключена к клемме N вместо L (например, заменены местами L и N в сетевой розетке).			
TEMPERATURA!	Превышена температура внутри измерителя.			
f!	Частота сети находится за пределами диапазона 4565 Гц.			
PE!	Неправильное подключение провода РЕ.			
BŁĄD!	Ошибка измерения.			
U>500V!	На измерительных гнездах напряжение перед измерением превышает 500 В.			
NAPIĘCIE!	Превышено напряжение.			

Дополнительная информация, отображаемая измерителем:

4.3.4 Измерения в сетях IT

Перед выполнением измерений, в главном меню прибора необходимо выбрать соответствующий тип сети (меню **Параметры измерений**, гл.2.2).

При выборе сети типа IT функция сенсорного электрода будет неактивна.

Способ подключения прибора к сети показан на Рис. 4.1 и Рис. 4.2.

Рис. 4.1 Измерение УЗО в сети IT. Цепь замыкается через паразитные ёмкости С_х

Рис. 4.2 Тестирование УЗО без участия провода РЕ

Способ, каким следует выполнить измерение тока и времени срабатывания УЗО, описан в гл.4.3.2 и гл.4.3.3.

Рабочий диапазон напряжений: 95...270 В.

4.4 АВТОМАТИЧЕСКИЕ ИЗМЕРЕНИЯ ДИФФ. ВЫКЛЮЧАТЕЛЕЙ

Прибор позволяет измерить время t_A и ток срабатывания I_A выключателя УЗО, напряжение прикосновения U_B, а также сопротивление заземления R_E в автоматическом режиме. При этом нет необходимости каждый раз запускать измерение кнопкой **СТАРТ**. Роль человека, выполняющего измерение, сводится к инициированию измерения путём однократного нажатия кнопки **СТАРТ** и включения УЗО после каждого его срабатывания.

4.4.1 Параметры автоматического измерения УЗО

Выбрать **RCD**_{AUTO}.

2	() 15:56:03 2018-11-13 ⓐ 3.7 08 \bullet 97 % ∰ ♥ ⓐ 000000 GOTOWY! U = 241,9 V f = 50,0 Hz U _L = 25,0 V U _{L-PE} = V U _B = V R _E = Ω ♦ U _L	Выбрать U и требуемое измерительное напряжение из списка. Выбрать значение номинального дифференциального тока для тестируемого УЗО. Выбрать тип тестируемого УЗО.
3	(15:56:02) 2018-11-13 (1) 97 % (1) (1) 97 % (1) (1) (1) RCDurro (2) (2) (2) (2) (2) (1) U = 241,9 V f = 50,0 Hz (1) (2)	Выбрать параметры, которые должны быть измерены. Обозначения: I _A – ток срабатывания. t _A – время срабатывания. + нарастающий фронт тока. - спадающий фронт тока. x0,5 / 1 / 2 / 5 – кратность номинального тока УЗО согласно IEC 61557-6. Выбрать режим измерения: (a) полное РЕЛУУ, (b) стандартное РЕЛУУ.
(4a)	() 15:58:19 2018-11-13	При выборе режима полного измерения, необходимо выбрать тип УЗО.
(4b)	() 15:58:40 2018-11-13	Если выбран стандартный режим, то необходимо задать форму измерительного тока.

4.4.2 Автоматическое измерение УЗО

1 Подключить прибор к сети в соответствии с рисунком.

3 Ввести параметры измерения в соответствии с гл.4.4.1.

2

	① 15:56:03 2018-11-13 📓 3.7 GB 111 97 % 💷 ₩	
4	$U = 241,9 V$ $f = 50,0 Hz$ $U_L = 25,0 V U_{L-PE} = \cdots V U_B = \cdots V R_E = \cdots \Omega$	Измеритель готов к измерению. <u>Текущие показания:</u> U – напряжение между фазовым проводом L и PE. f – частота сети в тестируемой цепи.
5	◆ UL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Для запуска измерения нажмите кнопку СТАРТ .
6	() 16:12:50 2018:11-13 () 16:12:50 2018:11-13 () 100 %) () () () () () () () () () () () () (Необходимо включать тестируемое УЗО после каждого срабатывания, пока не закончится измерение. Индикаторы выполнения показывают прогресс измерения: верхний – ход текущего измерения. нижний – ход всей последовательности измерения. Измерение можно отменить в любой момент с
		помощью иконки 📧 💶.

	16:17:24 2018-11-13	🖀 3.7 GB 🔒 📲 🚺 100 % 💷 🖶 👾				
	RCD _{AUTD}	0	Затем	отображаются	измеренные	параметры
	\sim t _A x1- t _A = 20 ms	2018-11-13 16:14:07	(гл.3.8.1	, шаг (3), а также	:	
	\sim t _A x2+ t _A = 8 ms		U _L – измерительное напряжение.			
	$ \sim t_A x2 - t_A = 18 \text{ ms} $	<u>}</u>	U _{L-PE} — I	напряжение меж	ду L и PE.	
	\sim t _A x5- t _A = 17 ms		U _в – напряжение, измеренное на РЕ.			
	\sim I _A - I _A = 24,4 mA		R _E — co	противление РЕ.		
(7)	♦ U _L	i di	Список	результатов можн	ю прокручивать	ь на экране.
Ŭ	🕚 16:19:30 2018-11-13	■ 3.7 GB , 111 100 % (1119) ♥ (?)	<u>Контрол</u>	ь правильности р	аботы:	
	L-PE!	2018-11-13 16:14:07	(🕗 — критерий выг	юлнен.	
	U = 18,1 V f = 50,0 Hz		(😣 – критерий не в	зыполнен.	
		L = 0.1 V $R = 0.00 k0$	Более	подробная ин	формация со,	держится в
	$U_L = 25,0 V U_{L-PE} = 241,8 V U_{L-PE}$	$B = 0,1$ V $R_E = 0,00$ KΩ	раздел	е таблицы Крите	ерии оценки п	равильности
	\sim t _A x0.5+ t _A > 300 ms Θ)	резуль.	атов.		
	♦ UL	8 8	1-5/10			

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку .

Параметры U_в и R_е измеряются всегда.

Измерение U_B , R_E всегда осуществляется синусоидальным током 0,4 I_{i2n} независимо от настроек формы сигнала и кратности I_{i2n} .

Автоматическое измерение прерывается в следующих случаях:

- Выключатель сработал во время измерения U_B, R_E или t_A при кратности тока 0,5 I_{Δn};
- Выключатель не сработал при остальных частичных измерениях;
- Превышено предварительно заданное значение напряжения UL;
- Исчезло напряжение во время одного из измерений;
- Значение R_E и напряжения сети не позволили создать ток требуемого значения для одного из измерений.

Автоматически пропускаются измерения, которые невозможно выполнить, например, если выбранный ток І_{дп} или его кратность превышают измерительные возможности прибора.

Параметр	Критерий оценки	Примечания
$I_A \sim$	$0,5 I_{\Delta n} \leq I_A \leq 1 I_{\Delta n}$	-
	$0,35 \ I_{\Delta n} \leq I_A \leq 2 \ I_{\Delta n}$	для I _{Δn} = 10 мА
	$0,35 \ I_{\Delta n} \leq I_A \leq 1,4 \ I_{\Delta n}$	для остальных I _{∆n}
I _A	$0,5 I_{\Delta n} \leq I_A \leq 2 I_{\Delta n}$	-
t ₄ при 0,5 I∆n	$t_A \rightarrow rcd$	для всех типов УЗО
t_А при 1 I ∆n	t _A ≤ 300 мс	для УЗО общего назначения 🗌

Критерии оценки правильности результатов

t_А при 2 I ∆n	t _A ≤ 150 мс	для УЗО общего назначения 📃
t_А при 5 I ∆n	t _A ≤ 40 мс	для УЗО общего назначения 📃
t_А при 1 I ∆n	130 мс ≤ t _A ≤ 500 мс	для селективных УЗО s
t_А при 2 I ∆n	60 мс ≤ t _A ≤ 200 мс	для селективных УЗО s
t_А при 5 I ∆n	50 мс ≤ t ₄ ≤ 150 мс	для селективных УЗО s
t ₄ при 1 I∆n	10 мс ≤ t ₄ ≤ 300 мс	для УЗО с малой задержкой срабатывания 🖪
t ₄ при 2 I∆n	10 мс ≤ t ₄ ≤ 150 мс	для УЗО с малой задержкой срабатывания 🖪
t _А при 5 I _{∆n}	10 мс ≤ t _A ≤ 40 мс	для УЗО с малой задержкой срабатывания 🖪

Дополнительная информация, отображаемая измерителем:

W ТОК	Процесс измерения.
U _B >UL!	Напряжение прикосновения превышает заданное пороговое значение U _L .
Brak U _{L-N} !	Нет нейтрального провода, необходимого для I₄п постоянного тока и пульсирующего тока с постоянной составляющей.
GOTOWY!	Измеритель готов к выполнению измерения.
L-N!	Недопустимое напряжение U _{L-N} для выполнения измерения.
L-PE!	Недопустимое напряжение U _{L-PE} для выполнения измерения.
N-PE!	Недопустимое напряжение U _{N-PE} для выполнения измерения.
L ↔ N	Фаза подключена к клемме N вместо L (например, заменены местами L и N в сетевой розетке).
TEMPERATURA!	Превышена температура внутри измерителя.
f	Частота сети находится за пределами диапазона 4565 Гц.
PE!	
	Неправильное подключение провода РЕ.
BŁĄD!	Неправильное подключение провода РЕ. Ошибка измерения.
BŁĄD! U>500V!	Неправильное подключение провода РЕ. Ошибка измерения. На измерительных гнёздах напряжение перед измерением превышает 500 В.

4.5 СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ

Измеряемый объект не должен находиться под напряжением.

4.5.1 Параметры измерений

Выбрать пункт **R**ıso.

() 12:05:53 2018-07-23

12:06:37 2018-07-23

 $R_{ISO L1-L2} = --- \Omega$

R_{ISO L1-L3} = --- Ω

R_{ISO L2-L3} = --- Ω

 $R_{ISO L1-N} = --- \Omega$

U=0V 🔨

12:05:31 2018-07-23

R_{ISO LN-PE}= --- Ω

U=1V

4

🔒 R_{ISO} 3P

f

(3c)

(4)

Подключите к измерителю щупы или адаптер, которыми будут выполняться измерения.

Нажмите раскрывающееся меню, чтобы установить режим измерения.

Пункты меню будут отличаться в зависимости от того, что подключено к измерителю:

- (а) измерительные щупы.
- (b) адаптер UNI-Schuko.
- с) адаптер AutolSO-1000С.

🔒 R_{iso} 2P GOTOWY! Если к измерителю подключены отдельные провода $R_{ISO} = --- \Omega$ (3a) RISO MIN 5,00 MΩ U = 1 V 🎯 🔶 🔽 Un 50 V 🗸 Limit ÷ LAT. ŧ

🕅 📔 🖬 🛛 100 % 📖 🖶 👻

RISO MIN

5 kΩ

Limit

t

RISO MIN

5.00 MΩ

ŧ

🕅 🛛 🗤 🚺 🛛 100 % 🚥 🖶 🐺

со щупами, выберите в списке требуемую опцию: → режим однократного измерения.

⊙ режим непрерывного измерения.

	(§ 12:06:12 2018-07-23	100%
	1 Riso 3P	0
	GOTOWY!	
	$R_{ISO LN-PE} = \Omega \qquad \qquad U_{ISO LN-PE} = V$	
3b		R _{ISO MIN} 5,00 MΩ
		uto Limit
	(V)(PE)(L) (L+N)(PE)	đ

GOTOWY!

U_{ISO L1-L2} = --- V

U_{ISO L1-L3} = ---- V

U_{ISO L2-L3} = --- V

U_{ISO L1-N} = --- V

GOTOWY! UISO LN-PE = --- V

3 przev

📲 5 przew. 🔽 Un 50 V 🔽 🕚 Auto

卣

(L+N)(PE) V Un 50 V Auto Limit

L)

Если к измерителю подключен адаптер UNI-Schuko, выберите в списке требуемую опцию:

(L)(PE)(N) — если фазный провод слева, относительно защитного контакта (штыря) розетки. (N)(PE)(L) – если фазный провод справа, относительно защитного контакта (штыря) розетки. (L+N)(PE) – замкнутые провода L и N, измерение по РЕ (упрощенный метод).

Если к измерителю подключен адаптер AutoISO, выберите в списке требуемую опцию:

- 3 пров. измерение 3-х жильного кабеля.
- 4 пров. измерение 4-х жильного кабеля.
- 5 пров. измерение 5-ти жильного кабеля.

Нажмите раскрывающееся меню, чтобы задать измерительное напряжение Un.

	① 12:07:03 2018-07-23 ☆ R ₈₀ 3P	🕅	
5	GOTOWY! R _{ISO LN-PE} =Ω U _{ISO LN-PE} =Ω U = 1 V (L+N)(PE) Un 50 100 250 50	V R _{ISO MIN} 5,00 MΩ	Выбрать из списка требуемое измерительное напряжение.
6	 ① 12:05:31 2018-07-23 ▲ Res 3P GOTOWY! RISO LN-PE = Ω UISO LN-PE = 1 U = 1 V Q (L+N)(PE) ↓ Un 501 	Ν 100 % (Π) * ? V RISO ΜΙΝ 5,00 ΜΩ * * * *	Нажимая иконку настроек времени , задайте продолжительность измерения. После сделанного выбора отображается установленное значение.
7	① 12:07:19 2018-07-23 ⑦ Row 3P COTOWY Ustawienia czasu Ustawienia czasu Ø Auto Auto Ø 8 % 50 % Ø 2 definiowany Ortowany	Ν	<u>Доступные параметры:</u> Авто – измеритель автоматически подбирает время измерения в зависимости от ёмкости измеряемого объекта: • 30 с. • 60 с. Вручную – время устанавливается вручную в интервале 160 с.
8	 12:07:42 2018-07:23 Rus 3P RISO LN-PE = Zdefiniowany U = 1 V 	 ▶ 100 ★ ₩₩ ₩ Piso MIN 5,00 MΩ Arulu Arulu Limit 	Если выбран пункт Вручную , то необходимо ввести требуемое значение времени.
9	13 ~ 1 @ 3 4 5 6 7 8 7ab Q W E R T Y U Caps Lock A Shift Z Zahres: 1-60	1 0 * • • • I 0 P { 1 · · K L : · • • · <.	Удалить прежнее значение времени и ввести новое в диапазоне 160 с. <u>Функции символов:</u> Отмена изменений и выход к предыдущему экрану. Принятие изменений.

	© 12:08:06 2018:07-23	
10	RISO LN-PE = U = 1 V Φ Zdefiniowany C 138 C Auto Limit	<u>Описание функциональных клавиш:</u> Оk – принятие выбора. Отмена – отмена изменений .
(11)	① 12:08:21 2018-07-23 № 	Выбрать Лимит , чтобы установить критерий допустимого значения сопротивления изоляции.
		Выбрать единицу измерения.
(12)	5 kΩ MΩ GΩ ⁻ <u>1</u> ² ³ ⁴ ⁵ ⁶ ⁶ ⁸ ⁹ ⁹ ¹ ⁻ ¹	Удалить прежнее значение времени и ввести новое. Диапазоны: кОм: 02 000 000. МОм: 0,0200,0. ГОм: 0,0002,000. Функции символов: Отмена изменений и выход к предыдущему экрану. Принятие изменений.
(13)	(12:08:21) 2018-07:23 (10:0 %)	ቀ – переход к предыдущему экрану. 👚 – переход к главному экрану.

4.5.2 Измерение с использованием измерительных зондов

При измерениях сопротивления изоляции, на наконечниках измерительных проводов прибора появляется опасное напряжение до 1 кВ.

<u>Недопустимо</u> отключать измерительные провода до окончания измерения. Это угрожает <u>поражением</u> высоким напряжением и делает невозможным разряд тестируемого объекта.

1

Выбрать пункт **R**_{Iso}, чтобы вызвать меню измерения.

Подключить к прибору измерительные провода с подключенными зондами.

(3) Ввести настройки измерения в соответствии с гл.4.5.1.

START

(5)

(6)

12:27:43 2018-07-23
 R₁₅₀ 2P

U = 0 V

GOTOWY!

R_{ISO} > 250 MΩ

🖹 🔒 🚺 100 % 🕮 🛱

2018-07-23 12:27:41

 \oslash

R_{ISO MIN} 5,00 MΩ

1

Нажмите и удерживайте кнопку СТАРТ.

провода

подключить

согласно

Измерение выполняется непрерывно во время удержания кнопки **СТАРТ**.

Чтобы остановить измерение, необходимо отпустить кнопку **СТАРТ**.

Если выбран непрерывный режим измерения (иконка 💽), то появится **запрос** о подтверждении запуска измерения.

Во время измерения **светодиод H.V./REC/CONT.** светит оранжевым цветом.

Считать результат измерения.

Индикаторы выполнения лимита (гл.4.5.1, шаг (1)):

- результат находится в заданном лимите.
- 😢 результат вне заданного лимита.
- 😔 оценка невозможна.

Если выбран непрерывный режим измерения (иконка 💽), то его можно остановить, нажимая иконку 📧.

Пока измерительное напряжение не достигнет 90% заданного значения (а также при превышении 110%) измеритель генерирует непрерывный звуковой сигнал.

После окончания измерения происходит разряд ёмкости измеряемого объекта путём замыкания гнёзд **R**_{Iso}+ и **R**_{Iso}- сопротивлением 100 кОм.

Дополнительная информация, отображаемая измерителем:

.

 GOTOWY!
 Измеритель готов к выполнению измерения.

 W ТОКU
 Процесс измерения.

	Обнаружено присутствие слишком высокого напряжения на гнездах измерителя.
7	Отключить щупы от тестируемого объекта.
SZLIMI	На тестируемом объекте возникло напряжение помех. Измерение возможно,
SZUM!	однако, может получить дополнительную погрешность.
LIMIT!	Сработало ограничение по току. Отображение символа во время измерения
	сопровождается непрерывным звуковым сигналом. Если он отображается после
	измерения, то это значит, что результат измерения получен при работе с
	ограничением тока (например, замыкание на тестируемом объекте).

4.5.3 Измерение с использованием адаптера UNI-Schuko (WS-03 и WS-04)

При измерениях сопротивления изоляции, на наконечниках измерительных проводов прибора появляется опасное напряжение до 500 В.

<u>Недопустимо</u> отключать измерительные провода до окончания измерения. Это угрожает <u>поражением высоким напряжением</u> и делает невозможным разряд тестируемого объекта.

4

Выбрать пункт **R**_{ISO} для вызова меню измерения.

Подключить **адаптер WS-03** или **WS-04** с сетевой вилкой UNI-Schuko.

Измеритель автоматически обнаружит этот факт, изменяя вид экрана.

(3) Ввести настройки измерения в соответствии с гл.4.5.1.

Подключить адаптер к тестируемой розетке.

Для запуска измерения нажмите кнопку СТАРТ.

В случае, если какое-нибудь из напряжений превышает допустимое значение (50 В), то отображается надпись **Напряжение на объекте**, а измерение блокируется.

Во время измерения светодиод H.V./REC/CONT.

W TOKU

U_{ISO L-N} = --- V

v Un

() 4 / 13 s

0

v ()

R_{ISO L-N} = 101,9 MΩ

10%

100% 📖 🗎 🕅

RISO MIN

5,00 MΩ

f

12:23:42 2018-07-23

R_{ISO L-N} = --- Ω

RISO N-PE = --

U_{ISO} = 53 V

R_{ISO L-PE} =

A Riso

A

6)

светит оранжевым цветом.

Вид экрана во время измерения.

Отображается символ измеряемого в настоящее время сопротивления и индикатор выполнения этого измерения.

Полоса индикатора выполнения показывает уровень завершенности измерения.

Измерение можно отменить в любой момент времени, нажав иконку **соло**.

Считать результаты.

Индикаторы выполнения лимита (гл.3.9.1, шаг (т)):

- результат находится в заданном лимите.
- 12:24:22 2018-07-23 🕅 🛛 🗤 🚺 🕺 100 % 📖 🖶 🐺 🔒 Riso 3P GOTOWY! 2018-07-23 12:24:18 R_{ISO L-N} = 101,9 MΩ U_{ISO L-N} = 53 V - \odot $R_{ISO N-PE} > 250 M\Omega$ $U_{ISO N-PE} = 53 V$ RISO MIN (7) $R_{ISO L-PE} > 250 M\Omega$ $U_{ISO L-PE} = 53 V$ e? 5,00 MΩ (N)(PE)(L) V Un 50 V 13s Limit U=1V 4 **f**
- 🛞 результат вне заданного лимита.
- 😔 оценка невозможна.

<u>Дополнительные индикаторы для каждой</u> измеряемой пары проводов:

шум – зарегистрирован слишком большой сигнал помехи.

лимит – измерение выполнено при ограничении тока преобразователя (например, замыкание на тестируемом объекте).

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку [].

Пока измерительное напряжение не достигнет 90% заданного значения (а также при превышении 110%) измеритель генерирует непрерывный звуковой сигнал.

После окончания измерения происходит разряд емкости измеряемого объекта путем замыкания гнезд **R**_{Iso}+ и **R**_{Iso}- сопротивлением 100 кОм.

Дополнительная информация, отображаемая измерителем:

GOTOWY!	Измеритель готов к выполнению измерения.
W ТОКU	Процесс измерения.
	Обнаружено присутствие слишком высокого напряжения на гнездах измерителя. Отключить щупы от тестируемого объекта.
	На тестируемом объекте возникло напряжение помех. Измерение возможно, однако, может получить дополнительную погрешность.

Сработало ограничение по току. Отображение символа во время измерения сопровождается непрерывным звуковым сигналом. Если он отображается после измерения, то это значит, что результат измерения получен при работе с ограничением тока (например, замыкание на тестируемом объекте).

4.5.4 Измерение с использованием AutoISO-1000C

При измерениях сопротивления изоляции, на наконечниках измерительных проводов прибора появляется опасное напряжение до 1 кВ.

<u>Недопустимо</u> отключать измерительные провода до окончания измерения. Это угрожает <u>поражением высоким напряжением</u> и делает невозможным разряд тестируемого объекта.

			-

	() 12:24:49 2018-07-23	M	.111 100 % IIII \ ?	Измерите
(4)	$R_{ISO L1-L2} = Ω$ $R_{ISO L1-L3} = Ω$ $R_{ISO 12-13} = Ω$	GOTOWY! U _{ISO L1-L2} = V U _{ISO L1-L3} = V U _{ISO L2-L3} = V	RISO MIN	<u>Текущие п</u> U – напря
\bigcirc	$R_{\rm ISO L1-N} = \cdots \Omega$ $U = 0 V \checkmark$	U _{ISO L1-N} = V 5 przew. ↓▼ Un 50 V ↓▼	© Auto Limit	<u>Описание</u>
	•	È l	5 f	прокру

Измеритель готов к измерению.

<u>Текущие показания:</u>

U – напряжение помех.

Описание функциональных символов: Прокрутка вниз списка измерений.

🕋 прокрутка вверх списка измерений.

ſ7

14

Подключить адаптер AutoISO-1000С к тестируемому кабелю.

Для запуска измерения нажмите кнопку СТАРТ.

Во время измерения **светодиод H.V./REC/CONT.** светит **оранжевым** цветом.

В случае, если какое-нибудь из напряжений превышает допустимое значение (50 В), то отображается надпись **Напряжение на объекте**, а измерение блокируется.

Сначала выполняется проверка отсутствия напряжения на отдельных парах жил.

В случае, если какое-нибудь из напряжений превышает допустимое, отображается значок этого напряжения (например, **НАПРЯЖЕНИЕ! L1PE**), а измерение прекращается.

Вид экрана во время измерения.

Отображается символ измеряемого в настоящее время сопротивления и индикатор выполнения этого измерения.

Полоса индикатора выполнения показывает % завершения всего измерения.

Измерение можно отменить в любой момент времени, нажав иконку **с**.

Считать результаты.

🕅 | 🚛 | 100 % 📖 🛱

-

-

Ĥ

2018-07-23 12:25:47

 \odot

RISO MIN

5 kΩ

ŧ

Индикаторы выполнения лимита (гл.4.5.1., шаг (11):

- результат находится в заданном лимите.
- 😢 результат вне заданного лимита.
- 💮 оценка неврзможна.

<u>Дополнительные индикаторы для каждой</u> измеряемой пары проводов:

GOTOWY!

UISO 11-12 = 53 V

U_{ISO L1-L3} = 53 V

U_{ISO L2-L3} = 53 V

5 przew. Vn 50 V V (C) Auto Limit

R_{ISO L1-N} > 250 MΩ U_{ISO L1-N} = 53 V M ↔

8

12:25:50 2018-07-23

R_{ISO L1-L2} > 250 MΩ

R_{ISO L1-L3} > 250 MΩ

R_{ISO L2-L3} > 250 MΩ

-

сигнал помехи.

лимит – измерение выполнено при ограничении тока преобразователя (например, замыкание на тестируемом объекте).

	12:26:06 2018-07-23			ili. 🚿	100%
	A Reso				?
			GOTOWY!	201	8-07-23 12:25:47
	R _{ISO L1-PE} > 250 M	Ι Ω L	J _{ISO L1-PE} = 53	V	\odot
\bigcirc	$R_{ISO \ L2-PE} > 250 \ N$	1Ω ι	J _{ISO L2-PE} = 53	V	BISO MIN
Y	$R_{ISO \ L3-PE} > 250 \ N$	1Ω ι	J _{ISO L3-PE} = 53	V	S L O
	$R_{ISO N-PE} > 250 N$	1Ω ι	$J_{\rm ISO N-PE} = 53$	V	5 κΩ
	U=0V V	5 pr.	zew. Vn 50	V 🔽 🕚 Au	to Limit
	•	3	È		đ

С помощью ползунка или символов 💽 🝙 можно прокрутить экран, чтобы прочитать остальные результаты измерений.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку .

Пока измерительное напряжение не достигнет 90% заданного значения (а также при превышении 110%) измеритель генерирует непрерывный звуковой сигнал.

После окончания измерения происходит разряд емкости измеряемого объекта путем замыкания гнезд **R**_{Iso}+ и **R**_{Iso}- сопротивлением 100 кОм.

GOTOWY!	Измеритель готов к выполнению измерения.
W ТОКU	Процесс измерения.
	Обнаружено присутствие слишком высокого напряжения на гнездах измерителя. Отключить щупы от тестируемого объекта.
	На тестируемом объекте возникло напряжение помех. Измерение возможно, однако, может получить дополнительную погрешность.
F7A	Сработало ограничение по току. Отображение символа во время измерения сопровождается непрерывным звуковым сигналом. Если он отображается после измерения, то это значит, что результат измерения получен при работе с ограничением тока (например, замыкание на тестируемом объекте).

Дополнительная информация, отображаемая измерителем:

ī

4.6 НИЗКОВОЛЬТНОЕ ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ

4.6.1 Измерение сопротивления

Выбрать пункт **R**_x для вызова меню измерения.

Чтобы компенсировать сопротивление измерительных проводов, выберите **Автообнуление**.

🖹 🛛 🚛 🚺 100 % 📖 🛱

(13:11:22 2018-07-23

Действуйте в соответствии с сообщениями на экране.

Описание функциональных клавиш:

- Да принятие выбора.
- Нет отмена действия.

После выбора **ДА** измеритель представит **результат, уменьшенный** на сопротивление измерительных проводов.

Чтобы выключить компенсацию сопротивления проводов, необходимо повторить шаги (2)(3)(4) с разомкнутыми измерительными проводами. Тогда результат измерения будет включать в себя также сопротивление измерительных проводов.

Измеритель готов к измерению.

Подключить измеритель к тестируемому объекту.

Измерение начнется автоматически.

Во время измерения **светодиод H.V./REC/CONT.** светит **зелёным** цветом и вырабатывается звуковой сигнал.

Отображение символа ANAPIECIEI информирует о том,что исследуемый объект под напряжением. Измерение заблокировано. Необходимо немедленно отключить измеритель от объекта.

Если не была отменена опция Автообнуление (шаги (2)(3)(4)), то измеритель постоянно уменьшает результат измерения на величину сопротивления ранее подключенных измерительных проводов. Поэтому при каждой замене проводов необходимо снова провести процедуру Автообнуления.

Корректирующий коэффициент также сохраняется после повторного запуска функции и/или измерителя.

В ситуации, когда измерительные провода заменили на такие же, но с **меньшим** чем предыдущие сопротивлением и не провели процедуру **Автообнуления**, то измеритель будет **занижать** значение измерения. В крайних случаях он может показать даже **отрицательное сопротивление**. Аналогично, **большее** сопротивление новых измерительных проводов вызовет **завышение** результата измерения.

Максимальная компенсация сопротивления измерительных проводов (Автообнуление) составляет 500 Ом.

Дополнительная информация, отображаемая измерителем:

W ТОКU	Процесс измерения
NAPIĘCIE!	Недопустимое напряжение на объекте.
SZUM!	На тестируемом объекте возникло напряжение помех. Измерение возможно, но с дополнительной погрешностью, указанной в технических характеристиках.

4.6.2 Измерение сопротивления контактных соединений, защитных проводников и проводников системы уравнивания потенциалов током ±200 мА

Выбрать пункт **R**_{сомт} для вызова меню измерения.

es: 0 - 400

сопротивления устранения влияния измерительных проводов на результат измерения, выполнить его компенсацию С (Автообнуление). этой целью выберите Автообнуление.

Действуйте в соответствии с сообщениями на экране.

Описание функциональных клавиш: Да – принятие выбора. Нет – отмена действия.

выбора Да прибор После 3 раза измерит сопротивление измерительных проводов. Затем он будет представлять результат, уменьшенный на значение этого сопротивления.

Чтобы выключить компенсацию сопротивления проводов, необходимо повторить шаги (2)(3) с разомкнутыми измерительными проводами. Тогда результат измерения будет включать в себя также сопротивление измерительных проводов.

Установить допустимый сопротивления лимит измеряемого объекта.

Диапазон: 0...400 Ом Функции символов:

.

На экранной клавиатуре удалить прежнее значение и ввести нужное.

Отмена изменений и выход к предыдущему экрану.

Считать результат измерения.

🖹 🔒 🚺 🛛 100 % 💷 🕸 🗸 13:17:17 2018-07-23 A Rour GOTOWY! 2018-07-23 13:17:17 \oslash R = 0,42 Ω R_{CONT MAX} = 1,00 Ω 1 (9) 13:17:33 2018-07-23 🕅 🛛 🗤 🚺 🕺 100 % 💷 🖓 🚹 в GOTOWY! 2018-07-23 13:17:17 $R_{\rm B} = 0.41 \,\Omega$ 0,44 0 \oslash R = 0,42 Ω R_{CONT MAX} = 1,00 Ω

Ħ

Результат является средним арифметическим от значения двух измерений при токе 200 мА противоположных г R_Fи R_R.

$$R = \frac{R_F + R_R}{2}$$

Индикаторы выполнения лимита (шаг (5)):

— результат находится в заданном лимите.

🛞 – результат вне заданного лимита.

💮 – оценка невозможна.

После выбора панели 🖪 с правой стороны экрана откроется меню с дополнительными результатами измерения:

R_F – результат получен положительной при полярности измерительного тока.

результат получен **R**_R – при отрицательной полярности измерительного тока.

Нажатие на панель 🕨 скрывает меню.

Нажмите иконку 🔜, чтобы сохранить измерение в памяти прибора. Подробное описание (10) управлением памяти содержится в гл.7.1.3. Можно снова вызвать на экран последнее измерение, нажимая иконку 😭 .

Чтобы следующее измерение без начать отключения измерительных проводов от объекта, нажмите кнопку СТАРТ и перейдите к шагу (8).

(11)

Отображение символа NAPIECIE! информирует о том,что исследуемый объект под напряжением. Измерение заблокировано. Необходимо немедленно отключить измеритель от объекта.

полярностей **R**
$$R = \frac{R_F + R_R}{2}$$

Если не была отменена опция Автообнуление (шаги (2)(3)(4)), то измеритель постоянно уменьшает результат измерения на величину сопротивления ранее подключенных измерительных проводов. Поэтому при каждой замене проводов необходимо снова провести процедуру Автообнуления.

Корректирующий коэффициент также сохраняется после повторного запуска функции и/или измерителя.

В ситуации, когда измерительные провода заменили на такие же, но с **меньшим** чем предыдущие сопротивлением и не провели процедуру **Автообнуления**, то измеритель будет **занижать** значение измерения. В крайних случаях он может показать даже **отрицательное сопротивление**. Аналогично, **большее** сопротивление новых измерительных проводов вызовет **завышение** результата измерения.

Максимальная компенсация сопротивления измерительных проводов (Автообнуление) составляет 500 Ом.

Дополнительная информация, отображаемая измерителем:

GOTOWY!	Измеритель готов к выполнению измерения.						
W ΤΟΚU	Процесс измерения.						
NAPIĘCIE!	Слишком большое напряжение на объекте.						
	На тестируемом объекте возникло напряжение помех. Измерение						
ШУМ!	возможно, но с дополнительной погрешностью, указанной в технических						
	характеристиках.						

4.7 ПОСЛЕДОВАТЕЛЬНОСТЬ ЧЕРЕДОВАНИЯ ФАЗ

1-2-3

Выбрать пункт **Последовательность фаз**, чтобы вызвать экран измерения.

(2) Подключить прибор к сети в соответствии с рисунком

4.8 НАПРАВЛЕНИЕ ВРАЩЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯ

U_v = ---U_w = ---

4

Выбрать пункт **Вращение двигателя**, чтобы вызвать экран измерения.

Измеритель готов к тестам.

Подключите измеритель к электродвигателю согласно рисунку, т.е. контакт U к входу L1, V к L2, W к L3.

Энергично вращайте вал двигателя вправо.

Вращение на экране стрелок **вправо** означает, что у двигателя, подключенного к трёхфазной сети, вал также будет вращаться **вправо**.

Вращение на экране стрелок влево означает, что у двигателя, подключенного к трёхфазной сети, вал также будет вращаться влево.

Во время теста нельзя двигать измерительные провода.

Перемещение неподключенных измерительных проводов может привести к тому, что индуцированное напряжение покажет направления вращения.

4.9 ИЗМЕРЕНИЕ ОСВЕЩЁННОСТИ

(3)

Выбрать пункт Lux, чтобы вызвать экран измерения.

Подключить зонд люксметра.

Выбрать **Лимит**, чтобы задать критерий минимальной освещённости.

Нажмите иконку , чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3.

5 АВТОМАТИЧЕСКИЕ ИЗМЕРЕНИЯ

В измерителе предусмотрены автоматические процессы тестирования.

5.1 ВЫПОЛНЕНИЕ АВТОМАТИЧЕСКИХ ИЗМЕРЕНИЙ

俞

Ħ

	(18:48:09 2020-03-26	📓 3.6 GB wolne 🔒 🚺 100 % 🖼 🖬 🕂
	MA Pomiary automatyczne	0
	Nazwa	 Zmodyfikowano
		2020-03-26 15:35:03
(1)	EVSE	2020-03-26 15:35:03

+

(3)

Тестовые последовательности сгруппированы в две папки:

- Измерения в сетях TN/TT/IT;
- Измерения на зарядных станциях для электромобилей EVSE.

Выберите соответствующую папку и последовательность из списка.

Подключите измеритель к тестируемой цепи.

TART

В каждом из полей настройки введите тип измерительного аксессуара, параметры сети и другие необходимые данные.

Описание функциональных икон:

- 💿 справка по данному измерению.
- свернуть поля настроек.
- ∠ развернуть поля настроек.
- 🔚 сохранить введенные данные измерения.

Нажать кнопку **СТАРТ** для запуска автоматической последовательности измерений.

Вид экрана после выполнения одного из измерений тестовой последовательности.

Описание функциональных икон:

остановка процедуры и переход к итоговому экрану.

о повторение измерения с перезаписью его результата.

 повторение измерения без потери его предыдущего результата.

🔢 приостановка процедуры.

нерейти к следующему этапу процедуры или

итогу. Время автоматического перехода к следующему шагу устанавливается в соответствии с гл.2.2.

Итоговый экран.

Процедуру можно возобновить с помощью иконки 🕟.

Каждое измерение в последовательности содержит частичные результаты. Для их вызова нажмите ярлык этого измерения. При этом откроется окно, как для одиночного измерения. Выйти из окна можно с помощью иконки **(**.

Нажмите иконку **—**, чтобы сохранить измерение в памяти прибора. Подробное описание управлением памяти содержится в гл.7.1.3.

Все результаты измерения последовательности будут сохранены в одной точке измерения.

Индикаторы выполнения лимита

- результат находится в заданном лимите.
- 😢 результат вне заданного лимита.
- 🕞 оценка невозможна.
- – измерение не проводилось.

5.2 СОЗДАНИЕ ИЗМЕРИТЕЛЬНЫХ ПРОЦЕССОВ

Выбрать **+**, чтобы перейти к мастеру последовательности.

Выбрать **+**, чтобы добавить новое измерение к тестовым измерениям.

Из доступных элементов выбрать тот, который должен войти в состав процесса. В дополнение к стандартным измерениям также доступны:

	$ \begin{array}{c} & & & & & & & \\ & & & & & \\ & & & & \\ $	 Текстовое сообщение; Визуальный тест.
3	① 16:34:11 2020-03-26 ⓐ 3.6 GB wolne ↓ 100 % ● ● ● ●	После каждого выбора раскрывается меню с параметрами данного шага. Если тесты предусматривают измерения в зарядных станциях для электромобилей, то необходимо отметить поле EV. Описание функциональных икон: о справка по данному измерению. кака свернуть поля настроек. развернуть поля настроек.
4	① 16-40-49 2020-03-26 ⓐ 3.6 GB wolne ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	 Очередность шагов меняется с помощью иконок Для удаления шага воспользуйтесь иконкой . Сохраните процедуру, нажав иконку В отобразившемся окне будет предложено ввести название процедуры.
5	③ 16:43:38 2020-03-26 圖 3.6 GB wolne]100 % ●	Процедура будет доступна в главном меню автопроцедур. Чтобы её удалить, необходимо поставить рядом отметку ✔ и выбрать 📆.

6 РЕГИСТРАТОР

4

÷

6.1 ФУНКЦИОНАЛЬНОЕ ОПИСАНИЕ

ŵ

Ť

Измеритель ТММ-540 может выполнять роль 3-х фазного регистратора параметров электропитания. Он позволяет измерять и регистрировать параметры электрических сетей 50/60 Гц, таких как значения напряжений, токов, мощностей, гармоник и других. Для того, чтобы переключить измеритель в режим анализатора качества электропитания, необходимо на главном экране выбрать опцию **Регистратор**.

В этом режиме возможен просмотр текущих параметров сети (в т.ч.. осциллограмм, векторов основных составляющих, табличных данных), регистрация средних значений параметров согласно

настройкам пользователя и анализ зарегистрированнных данных (временные графики, диаграммы гармоник и т.д.).

Модуль анализатора использует следующие входные гнёзда измерителя:

- Три разъёма для токовых клещей I1, I2, I3;
- Три гнезда типа «банан» для напряжения L1, L2, L3 в многофункциональном разъёме, к которым подключаются отдельные фазы напряжения (максимум 550 В относительно земли);
- Отдельный разъём типа «банан», обозначенный N.

Рис. 6.1 Измерительные входы

Разъемы токовых клещей позволяют подключить несколько типов клещей для измерения токов. К ним можно подключить клещи:

- Гибкие F-1A, F-2A, F-3A с номинальным диапазоном 3000 A переменного тока (отличающихся только длиной окружности катушки);
- Клещи типа СТ: С-4А (диапазон 1000 А переменного тока), С-5А (диапазон 1000 А переменного/постоянного тока), С-6А (диапазон 10 А переменного тока) и С-7А (диапазон 100 А переменного тока).

Диапазон измерения можно изменить с помощью дополнительных трансформаторов, например, используя трансформатор 10 000 А / 5 А с клещами С-6А можно измерять токи до 10 000 А.

Регистрируемые данные сохраняются на сменной карте памяти типа microSD. Измеритель также содержит внутреннюю память, в которой хранятся в т.ч файлы конфигураций. Подробное описание управлением файлами памяти содержится в гл.6.5.3.

Конфигурация регистратора заключается в том, что пользователь задаёт только основные параметры: тип сети, тип клещей, частота, период усреднения. Всегда регистрируется все параметры, которые в состоянии измерить прибор. Ниже указаны все измеряемые прибором параметры питающей сети в режиме регистратора:

- Действующие значения напряжений;
- Постоянные составляющие (DC) напряжений;
- Действующие значения токов;
- Постоянные составляющие (DC) токов (только с использованием клещей C-5A);
- Частота сети в диапазоне 40...70 Гц;
- Гармоники напряжений и токов (до 40-й);
- Коэффициенты гармонических искажений ТНD_F напряжений и токов;
- Активная, реактивная, полная мощность и мощность искажений;
- Активная энергия потребленная и отданная;
- Реактивная энергия потребленная и отданная;
- Полная энергия;
- Коэффициенты мощности (PF);
- Коэффициенты асимметрии напряжений и токов.

Выбранные параметры объединяются (усредняются) по интервалу времени, выбранному пользователем (возможны настройки: 1 с, 3 с, 10 с, 30 с, 1 мин, 10 мин, 15 мин, 30 мин) и сохраняются на карту памяти.

Измеритель совместим с программным обеспечением PC Sonel Analysis, которое также используют другие анализаторы марки Sonel. Эта программа позволяет анализировать зарегистрированные данные. Данные для анализа можно считать по кабелю USB или прямо с карты microSD после её переноса во внешнее считывающее устройство для карт памяти, подключенное к ПК.

Тип сети,			_		ንሐሳ	21126			3-0	фазн	ая			3-фа	зная	1
канал			фазная			4-х проводная				3-х проводная						
Параметр		L1	Ν	L1	L2	Ν	Σ	L1	L2	L3	Ν	Σ	L12	L23	L31	Σ
	Действующее															
U	напряжение	•		•	•			•	•	•			•	•	•	
	Постоянная															
U _{DC}	составляющая	•		•	•			•	•	•			•	•	•	
	напряжения															
I	Действующий ток	٠		•	•	•		٠	•	٠	٠		•	•	•	
	Постоянная															
I _{DC}	составляющая тока	•	•	•	•	•		•	•	•	•		•	•	•	
f	Частота	٠		•				٠					•			
Р	Активная мощность	٠		•	•		•	٠	•	٠		٠				•
Q1	Реактивная мощность	٠		٠	•		•	٠	٠	•		٠				•(1)
D, S _N	Мощность искажений	•		•	•		•	٠	٠	٠		٠				
S	Полная мощность	•		•	•		•	•	•	•		•				•
PF	Коэффициент мощности	•		•	•		•	٠	٠	٠		٠				•
TUD	Коэффициент гармоник								_							
THD _F U	напряжения	•		•	•			•	•	•			•	•	•	
	Коэффициент гармоник	_	_	_	_	_		_	_	_			_	_	_	
IHDFI	тока	•	•	•	•	•		•	•	•	•		•	•	•	
	Активная энергия						•		•	•		•				
E _{P+} , E _{P-}	(потребленная и	•		•	•			•								•
	отданная)															
	Реактивная энергия															
E _{Q1+} , E _{Q1-}	(потребленная и	•		•	•		•	•	٠	•		•				•(1)
	отданная)															
Es	Полная энергия	٠		•	•		•	٠	•	•		•				•
the the	Амплитуды гармоник															
0h10h40	напряжения	•		•	•			•	•	•			•	•		
line line	Амплитуды гармоник															
•n1•••n40	тока					•			•	•				•		
	Симметричные															
Асимметрия	составляющие											•				•
U, I	и коэффициенты															
	асимметрии															

В	Error!	Reference	source	not	found.	приведены	параметры,	измеряемые	регистратором	в
32	висимо	ости от типа	сети.							

Пояснения: L1, L2, L3 (L12, L23, L31) означают фазы по порядку,

N означает измерение тока I_N в зависимости от типа параметра,

Σ означает суммарное значение системы.

- (1) В 3-х проводных сетях за полную реактивную мощность считается неактивная мощность N.
- (2) Только потребляемая энергия Е_{Р+}

Во время регистрации **светодиод H.V./REC/CONT.** мигает **красным** цветом с 2-х секундным интервалом времени.

Для того, чтобы избежать неоднозначности в расчёте мощности, клещи необходимо устанавливать так, чтобы находящиеся на них стрелки, указывали на точку подключения гнезда L измерителя к тестируемому объекту.

В случае установки клещей наоборот, в измерителе можно ввести предусмотренную коррекцию перед стартом регистрации (гл.6.5.1).

6.2 ОСНОВНЫЕ ЭЛЕМЕНТЫ ЭКРАНА

После входа в режим регистратора отображается Главное меню. Оно будет доступно:

- После включения регистратора;
- В любой момент времени, после нажатия иконки 🕋 на экране дисплея.

Рис. 6.2 Основные элементы экрана регистратора

1 Верхняя панель.

2 Название активного меню.

Факт ввода изменений, которые еще не были сохранены, сигнализируется символом * в заголовке экрана.

3 Главное окно.

- 4 Панель информации о текущей конфигурации сети.
- 5 Панель функциональных иконок.
- 6 Справка для активного меню.
 - Визуализация схем подключения;
 - Объяснения функций иконок.

6.2.1 Верхняя панель

Вверхней части экрана находится панель с индикаторами состояния (Рис. 6.3).

Рис. 6.3. Элементы вехней панели

1 Текущие время и дата.

2 Индикатор функции HOLD.

Выбор этой иконки на экранах режима LIVE (просмотр текущих параметров сети, см. гл.6.6.) вызывает прекращение обновления показываемого изображения. Повторное нажатие приводит к возврату к нормальному режиму отображения.

3 Индикатор правильности подключения регистратора.

Иконка, которая находится на кнопке, информирует о правильности или потенциальной проблеме с конфигурацией или подключением регистратора (могут отображаться символы , , или). Нажатие на эту иконку вызывает появление окна с подробной информацией о возможных ошибках в подключении регистратора к тестируемой сети и соответствии параметров сети текущей конфигурации измерения. Более подробную информацию можно найти в гл.6.3.2.

4 Иконка состояния регистрации.

- 💿 регистрация неактивна.
- 🧿 регистрация активна.
- 5 Информация о подключенных или сконфигурированных токовых клещах.
 - Если в конфигурации измерения клещи не используются, то отображаются черточки "---";
 - Если выбран конкретный тип клещей, то отображается их название.
- 6 **Иконка карты памяти вместе с информацией о свободном месте.** Если в слоте нет карты памяти, то иконка перечеркнута.
- 7 Иконка внешней USB памяти (флэшка).

Если никакая внешняя память не подключена, то иконка перечеркнута.

8 Иконка состояния аккумулятора и подключенного сетевого питания.

6.2.2 Панель заголовка

Панель заголовка (Рис. 6.2, элемент 2) отображает название текущего главного окна вместе с именем секции. Она позволяет пользователям быстро сориентироваться, в какой части интерфейса они сейчас находятся.

6.2.3 Главное окно

В центре экрана отображается главное окно регистратора. По умолчанию окно (показанное на Рис. 6.2) содержит пункты:

- Конфигурация регистрации эта часть интерфейса используется для настройки измерительной схемы и всех аспектов, связанных с регистрацией параметров сети, таких как: тип сети (например, однофазная, трехфазная) или тип клещей (гл.6.4);
- Анализ регистрации позволяет проводить анализ зарегистрированных данных и просматривать текущую регистрацию (гл.6.7);

- Настройки анализатора здесь можно найти множество вариантов конфигурации регистратора (более подробно: гл.6.5);
- Калькулятор потерь энергии в этом режиме можно оценить финансовые потери из-за плохого качества электропитания;
- Выход выход в главное меню.

6.2.4 Панель информации о параметрах текущей сети

Ниже главного экрана отображается панель, представляющая основные параметры активной схемы измерения (Рис. 6.2, элемент 4):

- Номинальное напряжение;
- Частота сети;
- Схема сети;
- Название текущей конфигурации регистрации.

Схема сети обозначается символами:

- ¶м 1-фазная схема.
- 🕽 № 2-х фазная схема.
- 😘 3-х фазная 4-х проводная схема.
- З-х фазная 3-х проводная схема.
- УА 3-х фазная 3-х проводная схема с измерением токов методом Арона.

6.2.5 Справка

С правой стороны панели заголовка видна иконка справки ⑦ (Рис. 6.2, элемент 6). После её выбора отображается контекстная справка, которая описывает видимые на данном экране элементы интерфейса.

6.3 ПОДКЛЮЧЕНИЕ ИЗМЕРИТЕЛЬНОЙ СХЕМЫ

6.3.1 Измерительные схемы

Регистратор можно напрямую подключить к сетям переменного тока следующих типов:

- Однофазная (Рис. 6.4);
- Двухфазная (с разделенной обмоткой трансформатора, англ. split phase) (Рис. 6.5);
- Трехфазная 4-х проводная (Рис. 6.6);
- Трехфазная 3-х проводная (Рис. 6.7, Рис. 6.8).

В 3-х проводных сетях переменного тока можно измерить токи методом Арона (Рис. 6.8), при использовании только двух пар клещей, измеряющих линейные токи I_{L1} и I_{L3}. Ток I_{L2} тогда рассчитывается по формуле:

$$I_{L2} = -I_{L1} - I_{L3}$$

Необходимо обратить внимание на направление подключения клещей (гибких и жестких). Необходимо так установить клещи, чтобы размещенная на них стрелка была направлена в сторону нагрузки. Можно провести проверку, выполняя измерение активной мощности – в большинстве типов пассивных приемников энергии активная мощность имеет положительный знак. В случае обратного подключения клещей возможно программно изменить знак полярности для выбранных клещей (**Настройки измерителя —> Клещи**).

На рисунках ниже схематически представлены способы подключения измерителя к тестируемой сети в зависимости от её типа.

Рис. 6.4 Схема подключения – однофазная сеть

Рис. 6.5 Схема подключения – двухфазная сеть

Рис. 6.6 Схема подключения – трехфазная цепь с четырьмя рабочими проводами

Рис. 6.7 Схема подключения – трехфазная цепь с тремя рабочими проводами

Рис. 6.8 Схема подключения – трехфазная цепь с тремя рабочими проводами (измерение токов методом Arona)

6.3.2 Контроль правильности подключения

Выбор на верхней панели иконки правильности подключения (Рис. 6.3 элемент 3) вызывает отображение окна, которое даёт некоторые важные сведения о подключении регистратора к тестируемой сети. Эта информация **помогает пользователю проверить соответствие** текущей конфигурации регистратора параметрам измеряемой сети.

- Значения напряжений две возможных иконки:
 - действющие значения напряжений правильные, находящиеся в допуске ±15% от номинального значения напряжения.
 - 🗶 действющие значения напряжений находятся вне диапазона U_{nom} ±15%.
- Значения токов четыре возможности:
 - действющие значения токов в диапазоне 0,3% Inom...115% Inom.
 - действющие значения токов меньше, чем 0,3% Inom.
 - 🗶 действющие значения токов больше, чем 115% Inom.
 - --- чёрточки отображаются, когда в конфигурации отключено измерение токов.
- Векторы напряжений регистратор проверяет правильность углов основных составляющих и отображает соответствующую иконку:
 - векторы имеют правильные углы в диапазоне ±30° от теоретического значения для резистивной нагрузки и симметричной схемы (в 3-фазной сети).
 - невозможно проверить правильность углов из-за слишком маленького действющего значения напряжения (меньше 1% Unom).
 - неправильные углы векторов. В трехфазной сети эта иконка отображается в т.ч. в случае обратного чередования фаз напряжения.
- Векторы токов проверяется правильность углов векторов основных составляющих токов относительно векторов напряжений. Отображаются иконки:
 - 💉 векторы в границах ±55° относительно углов соответствующих векторов напряжений.

- невозможно проверить правильность углов векторов токов из-за слишком маленького действющего значения токов (меньше 0,3% Inom).
- 🗶 векторы находятся вне допустимого диапазона углов (±55°).
- --- чёрточки отображаются, когда в конфигурации отключено измерение токов.
- Частота:
 - ✓ измеренная частота сети находится в диапазоне f_{nom} ±10%.
 - действющее значение напряжение опорной фазы меньше, чем 10 В или отсутствует синхронизация ФАПЧ (англ. PLL).
 - 🗶 измеренная частота находится вне диапазона f_{nom} ±10%.

Иконка, отображаемая на верхней панели управления, будет следующей:

- 🗶 🛛 если в таблице есть хотя бы один 🗙.
- 🤰 если в таблице есть хотя бы один 🍞, но нет ошибок (отсутствуют 💥).
- 🖌 если правильны все измеряемые параметры.

6.4 КОНФИГУРАЦИЯ РЕГИСТРАЦИИ

Перед началом любых измерений необходимо правильно настроить регистратор в соответствии с требованиями пользователя. Изменение конфигурации выполняется на уровне измерителя.

6.4.1 Конфигурация с помощью измерителя

Чтобы перейти к модулю конфигурации, необходимо на главном экране выбрать секцию **Конфигурация регистрации**. Отобразится список измерительных конфигураций, записанных в памяти (Рис. 6.9).

() 1	2:16:10 2018-05-24 🛛 📕 🛩 🛛 💿 💡 F-x 🗍 🕋 🗄	3.6 GB woln	• 🕺 🚥
	Konfiguracja rejestracji - lista konfiguracji		?
Тур	Nazwa	^ Rozmiar	Data
Ð	00_0	1.7 KB	2018-05-23 10:43:16
¢	00_1	1.7 KB	2018-05-23 10:43:16
¢	00_2	1.7 KB	2018-05-23 10:43:16
ø	2018-05-24 12_14_08_settings	1.7 KB	2018-05-24 12:14:14
	- fn:50 Hz TN Gefault registratio	n	1
	+ 🖉 💿		d

Рис. 6.9. Конфигурация регистрации – список конфигурации

Таблица состоит из столбцов:

- Тип отображаемый значок определяет тип измерительной конфигурации:
 - регистрация в соответствии с конфигурацией пользователя (неактивна серый цвет).

🔩 регистрация в соответствии с конфигурацией пользователя (активна – зеленый цвет).

- Имя присвоенное пользователем имя конфигурации.
- Размер размер файла конфигурации.

• Дата – дата и время создания конфигурации.

Список можно прокручивать перемещением пальца по области окна.

Сортировка элементов осуществляется прикосновением к заголовку. В первой строке таблицы находится активная конфигурация. Следующие строки будут отсортированы:

- По возрастанию (символ 📥 рядом с заголовком);
- По убыванию (символ 👽 рядом с заголовком).

Для того, чтобы **активировать выбранную конфигурацию**, необходимо выбрать ее строку, а затем иконку **()** на нижней панели (активация конфигурации).

Чтобы изменить выбранную конфигурацию, необходимо на нижней панели выбрать иконку 🖉 (редактирование) или дважды коснуться строки данной конфигурации.

Для **добавления новой конфигурации**, необходимо выбрать иконку 🕂 .

Описание функциональных иконок:

- 🕂 Добавление новой конфигурации.
- Редактирование активной конфигурации.
- Активация выбранной конфигурации.
- 💼 Возврат в главное меню режима регистратора.

6.4.2 Конфигурация регистрации

После выбора иконки + отобразится окно, как на Рис. 6.10. В строке заголовка появится название новой конфигурации, по умолчанию созданное с текущей датой и временем в формате *"ГГГГ-ММ-ДД чч_мм_cc_settings"*, которое можно изменить.

Символ звездочки после имени сигнализирует, что конфигурация была **изменена**, но еще **не сохранена**.

Рис. 6.10. Конфигурация регистрации - общие параметры

В этом окне можно задать параметры:

- Схема сети. Нажимая иконку раскрывающегося списка 🔽 или название сети, можно установить следующие типы:
 - о Однофазная.
 - о Двухфазная.
 - о **Трехфазная 4-Р** системы с нейтральным проводом, такие как «звезда» с N.
 - о **Трехфазная 3-Р** системы без нейтрального провода: «звезда» без N и «треугольник».
 - Трехфазная З-Р Арона как обычная З-х проводная схема, но с измерением тока двумя клещами (I₁ и I₃). Третий ток (I₂) определяется по формуле: I₂ = I₁ I₃.
- Частота номинальная частота сети. Доступны пункты:
 - о 50 Гц.
 - о 60 Гц.
- Период усреднения определяет период усреднения регистрируемых параметров, а также время между последовательными записями данных на карте памяти (вне событий). Доступны следующие настройки:
 - o 1 c.
 - 3 c.
 - o 10 c.
 - o **30 c**.
 - о 1 мин.
 - о 10 мин.
 - о 15 мин.
 - о 30 мин.
- Номинальное напряжение. Доступны пункты: 58/100, 64/110, 110/190, 115/200, 120/208, 127/220, 133/230, 220/380, 230/400, 240/415, 254/440, 290/500, 400/690 В.
- Тип клещей здесь можно включить или выключить измерение токов и установить тип клещей. Если требуется измерение токов, необходимо указать используемые клещи из списка:
 - Нет без применения клещей.
 - F-х гибкие клещи (катушка Роговского) с номинальным диапазоном 3000 А переменного тока.
 - о С-4 клещи СТ (с сердечником) с диапазоном 1000 А переменного тока.
 - о С-5 клещи с датчиком Холла и диапазоном 1000 А переменного/постоянного тока.
 - о С-6 клещи СТ (с сердечником) с диапазоном 10 А переменного тока.
 - о С-7 клещи СТ (с сердечником) с диапазоном 100 А переменного тока.

Описание функциональных иконок:

- ヘ Возврат к списку конфигураций без сохранения изменений.
- 🗜 Сохранение изменений. Появится дополнительное окно, в котором можно:
 - изменить имя конфигурации.
 - установить сохраненную конфигурацию, как активную (🛹) или неактивную (—).
 - принять выбор (ОК).
 - отменить выбор (**Отмена**).
- 👚 Возврат в главное меню режима регистратора.

6.5 НАСТРОЙКИ АНАЛИЗАТОРА

На экране Настройки анализатора возможно:

- Определение способа установки клещей;
- Изменение идентификации фаз;
- Просмотр файлов, сохраненных в режиме регистратора.

① 12:19:52 2018-05-24	🖌 🛛 🖉 🖌 F->	x 📔 3.6 GB wolne 🕺	
👚 Ustawienia analizatora			?
Ustawienia sprzętowe	Ustawienia	Menedżery	
Cęgi	Ust. regionalne	Menadżer plików	
-∿- f _n :50 Hz	🚱 defaul	It registration	
· · ·	Ť	1	ł

6.5.1 Настройки оборудования – клещи (способ подключения)

Если клещи не были подключены в соответствии с направлением протекания тока, то можно ввести эту информацию в измеритель. Тогда показания регистратора будут автоматически исправлены. Такая возможность полезна в ситуации, когда физическая перестановка клещей невозможна или затруднена.

Для того, чтобы **ввести информацию** о способе установки клещей, нажмите соответствующий значок. Подключение (прямое/обратное) изменится на противоположное (обратное/прямое).

Фазы клещей нельзя изменять во время регистрации.

Описание функциональных иконок:

👞 Возврат в меню настроек регистратора.

- 🔚 Сохранение изменений. Появится дополнительное окно, в котором можно:
 - принять выбор (Да).
 - отменить выбор (Нет).
- 👚 Возврат в главное меню режима регистратора.

6.5.2 Настройки – Региональные настройки

На экране Региональные настройки можно изменить:

- Идентификацию фаз. Доступны варианты:
 - o L1, L2, L3.
 - A, B, C.
- Цвета фаз. Имеются цветовые схемы маркировки проводов для стран:
 - о Европейского Союза.
 - о Австралии.
 - о Индии.
 - о Китая.
 - о США.
 - о а также две дополнительные схемы (U1, U2) с конфигурацией пользователя.

(§ 12:56:26 2018-07-09	🔊 🛛 🧣 F-x 🛛 🎬 3.6 GB wolne 🕺 🛛 💷
👚 Ustawienia analizatora - ustawienia regionalne	•
ldentyfikacja faz	Kolory faz
L1, L2, L3	U 🕕 💶 🖪 N 🔽
- f _n :50 Hz	Gefault registration

Рис. 6.11 Региональные настройки

Если выбрана опция U₁ или U₂, то появится экран выбора цвета для сигналов тока или напряжения данной фазы.

(2) Нажать на индикатор требуемой переменной.

Нажать на желаемый цвет в области выбора.

(4) Повторить шаги (2) (3) необходимое число раз.

(5) **Ок** – подтверждение изменений и возврат к предыдущему экрану.

Отмена – отмена выбора и возврат к предыдущему экрану.

Описание функциональных иконок:

- ヘ Возврат в меню Настройки анализатора.
- 🔚 Сохранение изменений.
- 👚 Возврат в главное меню режима регистратора.

6.5.3 Менеджеры – менеджер файлов

На экране Настройки анализатора – менеджер файлов можно просматривать регистрации, находящиеся в памяти измерителя.

() 1	2:26:20 2018-05-24		-	0 9	F-x 📄	3.6	GB woln	e 🕺	
t	Ustawienia analizatora - Menadži	er nlików					all la series and a series of the series of		?
Тур	Wybierz		Nazwa			^	Rozmiar	Dat	ta
<u>}</u>	defaultConfig	uration					5.4 KB	2018-04-25	513:01:52
<u> </u>	defaultConfig	uration					4.7 KB	2018-04-25	513:02:56
	A 6.5011-								
	T _n :50 Hz	1 N			default registrati	ion	244	4	
				<u> </u>	Í	Ē		-	•

а. <u>Просмотр данных</u>

Описание функциональных иконок:

Выбор места, в котором следует провести поиск. После выбора откроется меню со следующими пунктами:

- 👸 🔹 выбор карты microSD.
- 💸 выбор внутренней памяти измерителя.
- запись активных () файлов на флэшку (опция активна, если флэшка находится в разъеме USB).
- активировать/отменить выбор всех записей.
- 🛞 закрытие меню.

Фильтрация списка файлов. После нажатия значка появяться параметры фильтрации (возможность многократного выбора, иконка активного фильтра имеет оранжевый цвет):

- 🔈 записанные сигналы.
- 💽 файл конфигурации.
- о скриншоты с сигналами.

📐 Возврат в меню **Настройки анализатора.**

- 💼 Удаление активной (📰)записи.
- 👚 Возврат в главное меню режима регистратора.

b. <u>Просмотр скриншотов</u>

С уровня менеджера файлов можно открыть содержимое скриншотов (символ 📷). С этой целью нажмите дважды на нужную позицию (Рис. 6.12).

Рис. 6.12 Просмотр примера скриншота

Описание функциональных иконок:

- 🚛 Предыдущий скриншот.
- 🔜 🕨 Следующий скриншот.
- 🔪 🛛 Возврат к менеджеру файлов.
- 👚 Возврат в главное меню режима регистратора.

6.6 ТЕКУЩИЙ ПРОСМОТР СЕТИ (РЕЖИМ LIVE)

Регистратор позволяет просматривать параметры сети в режиме реального времени (т.н. режим LIVE). Внизу главного меню режима регистратора отображаются иконки доступных представлений:

- 🔨 в виде мгновенных сигналов токов и напряжений (осциллограммы).
- 🚸 в виде временного графика (англ., timeplot).

🔢 - в виде таблицы измерений.

🙏 - в виде векторной диаграммы.

💵 - в виде диаграммы гармоник.

Обновление экрана в режиме LIVE можно временно заблокировать, используя функцию **HOLD** (смотри описание верхней панели в гл.6.2.1.).

- Чтобы приостановить обновление, выберите соответствующую кнопку на верхней панели (цвет иконки изменится на красный);
- Чтобы возобновить обновление экрана, снова нажмите иконку (цвет значка изменится на **чёрный**).

6.6.1 Мгновенные сигналы напряжений и токов (осциллограммы)

После выбора иконки **Л** появится изображение мгновенных сигналов токов и напряжений (осциллограмм). Отображаются два периода сети для сигналов активных каналов (в зависимости от измерительной конфигурации).

Примерный экран показан на Рис. 6.13. Этикетками справа окна можно включать и выключать отдельные каналы измерения (по крайней мере, один сигнал всегда должен быть виден). На каждой этикетке находится обозначение канала (например, "U L1") и его действующее значение.

Рис. 6.13. Текущие показания – осциллограммы

Описание функциональных иконок:

Меню активных каналов. При нажатии открывается дополнительная панель меню с кнопками для включения / выключения отображения данной фазы или тока и напряжения. Активный канал сигнализируется оранжевым цветом иконки. Следует помнить, что на экране всегда должен отображаться по крайней мере, один сигнал (нельзя выключить все). В меню показаны только кнопки тех каналов, которые есть в данной схеме сети. С уровня этого меню можно отключить:

- U совокупность всех сигналов напряжений.
- совокупность всех сигналов токов.
- L1 совокупность всех сигналов фазы L1.
- L2 совокупность всех сигналов фазы L2.
- L3 совокупность всех сигналов фазы L3.

- 🛞 выбор этой иконки закрывает меню.
- Q Изменение масштаба отображаемого сигнала. После выбора иконки раскрывается меню с опциями:
 - после выбора этой иконки, пальцем обведите на графике область, которая должна быть увеличена. График увеличится; затем его можно передвинуть пальцем вверх, вниз и в стороны.
 - e после выбора этой иконки, график уменьшится скачком.
 - 🛞 выбор этой иконки закрывает меню масштаба (также можно выбрать 📿).
- Иконка выбора типа представления. Отобразится дополнительное меню, в котором можно изменить вид отображения режима LIVE.
- Скриншот. Выбор иконки вызовет запись текущего содержания главного окна в графический файл. Имя файла создаётся автоматически на основе названия изображения и текущей даты, например "Текущие показания – осциллограммы – 2016-08-01 12_00_00". Файлы сохраняются во внутренней памяти измерителя.
- 👚 Возврат в главное меню режима регистратора.

График также можно масштабировать с помощью жестов. Чтобы его **увеличить**, **разведите** в противоположные стороны два пальца, касающиеся экрана). Для **уменьшения – приблизьте** друг к другу два пальца, касающиеся экрана).

Сигналы возвращаются к исходному размеру после включения или выключения любого канала (кнопки справа).

6.6.2 Временной график действующих значений

После выбора иконки **№** появляется изображение временного графика (Рис. 6.14). Данное представление отображает график эффективных значений напряжений и токов во времени. Все окно охватывает интервал примерно 110 секунд. После заполнения всего окна, график сдвигается влево на 30 секунд.

Рис. 6.14. Текущие показания – временной график

Описание функциональных иконок:

- Меню активных каналов. При нажатии открывается дополнительная панель меню с кнопками для включения / выключения отображения данной фазы или тока и напряжения. Активный канал сигнализируется оранжевым цветом иконки. Следует помнить, что на экране всегда должен отображаться по крайней мере, один сигнал (нельзя выключить все). В меню показаны только кнопки тех каналов, которые есть в данной схеме сети. С уровня этого меню можно отключить:
 - U совокупность всех сигналов напряжений.
 - I совокупность всех сигналов токов.
 - L1 совокупность всех сигналов фазы L1.
 - L2 совокупность всех сигналов фазы L2.
 - L3 совокупность всех сигналов фазы L3.
 - 🛞 выбор этой иконки закрывает меню.
- Q Изменение масштаба отображаемого сигнала. После выбора иконки раскрывается меню с опциями:
 - после выбора этой иконки, пальцем обведите на графике область, которая должна быть увеличена. График увеличится; затем его можно передвигать пальцем вверх, вниз и в стороны.
 - **Q** после выбора этой иконки график уменьшится скачком.
 - 🛞 🛛 выбор этой иконки закрывает меню масштаба (также можно выбрать 📿).
- Иконка выбора типа представления. Отобразится дополнительное меню, в котором можно изменить вид отображения режима LIVE.
- Скриншот. Выбор иконки вызовет запись текущего содержания главного окна в графический файл. Имя файла создается автоматически на основе названия изображения и текущей даты, например "Tekyщue показания – осциллограммы – 2016-08-01 12_00_00". Файлы сохраняются во внутренней памяти измерителя.
- 👚 Возврат в главное меню режима регистратора.

График таже можно масштабировать с помощью жестов. Чтобы его **увеличить**, **разведите** в противоположные стороны два пальца, касающиеся экрана). Для **уменьшения** – **приблизьте** друг к другу два пальца, касающиеся экрана).

Сигналы возвращаются к исходному размеру после включения или выключения любого канала (кнопки справа).

6.6.3 Текущие показания - табличный вид

После выбора иконки 🏢 отображается сводная таблица со значениями параметров сети. Таблица обновляется в режиме реального времени. Примерный экран показан на Рис. 6.15.

() 09	:14:33 2016	-08-05	Η 🗸	0	F-x 📄 3	3.6 GB wolne	X 🗉	
	Odczyty bieża	ące - pomiary					<u>H</u>	?
	U [V]	Uh01 [V]	UDC [mV]	f [Hz]	 [A]	lh01 [A]	IDC [mA]	[
L1	234.6	234.5	-14.14	50.00	10.85	10.40	3.642	2
L2	234.2	234.2	-50.63		19.70	19.56	-19.59	4
L3	233.0	233.0	2.078		16.30	15.23	6.154	3
Ν	0.386	0.309	-49.74		13.84	11.45	10.43	1
L1-2	405.0							
L2-3	405.2							
L3-1	405.3							
Σ				50.00				1
•						·		
~	U _n : 230.0 V	- A - f _n :50 Hz	YN	9	obiekt1-1s-	3f4p-flex		
	<È		>		í.	0	đ	

Рис. 6.15. Текущие показания – измерения

Строки таблицы обозначены следующим образом:

- L1 фазные значения L1.
- L2 фазные значения L2.
- L3 фазные значения L3.
- N значения напряжения токового канала I_{N.}
- L1-2 линейные значения L1-L2.
- L2-3 линейные значения L2-L3.
- L3-1 линейные значения L3-L1.
- Σ суммарные значения.

В следующих столбцах отображаются значения отдельных параметров:

U [B]	- действующее значение напряжения.						
U _{h01} [B]	 действующее значение основной составляющей напряжения. 						
U _{DC} [B]	- постоянная составляющая напряжения.						
f [Гц]	- частота сети.						
I [A]	- действующее значение тока.						
I _{h01} [A]	- действующее значение основной составляющей тока.						
I _{DC} [A]	- постоянная составляющая тока.						
Р [Вт]	- активная мощность.						
Q1 или QB [вар]	- реактивная мощность основной составляющей или реактивная мощность по						
	Budeanu (в зависимости от метода расчета реактивной мощности).						
S [BA]	- полная мощность.						
S _N [BA] или D [вар] - полная мощность искажений или мощность искажений по Budeanu (в						
	зависимости от метода расчета реактивной мощности).						
Е _{Р+} [Втч]	- активная потребляемая энергия.						
Е _{Р-} [Втч]	 активная отдаваемая энергия. 						
Е _{Q1+} или Е _{QB+} [варч] - реактивная потребляемая энергия.						
Е _{Q1-} или Е _{Q8} - [варч]	- реактивная отдаваемая энергия.						
Е _s [ВАч]	- полная энергия.						
PF	- коэффициент мощности (англ. <i>, Power Factor</i>).						
соsф	- коэффициент фазового сдвига.						
Pst	- кратковременная доза фликера.						

Plt	- длительная доза фликера.
U ₀ [B]	- нулевая симметричная составляющая напряжения.
U1 [B]	 прямая симметричная составляющая напряжения.
U2 [B]	- обратная симметричная составляющая напряжения.
U2/U1 [%]	- коэффициент несимметрии напряжения по обратной последовательности.
U₀/U₁ [%]	- коэффициент несимметрии напряжения по нулевой последовательности.
I ₀ [A]	- нулевая симметричная составляющая тока.
I ₁ [A]	 прямая симметричная составляющая тока.
I ₂ [A]	- обратная симметричная составляющая тока.
l₂/l₁ [%]	- коэффициент несимметрии тока по обратной последовательности.
I₀/I₁ [%]	- коэффициент несимметрии тока по нулевой последовательности.

Описание функциональных иконок:

<급 ☐> Прокрутка таблицы влево/вправо (также можно передвигать её пальцем).

Иконка выбора типа представления. Отобразится дополнительное меню, в котором можно изменить вид отображения режима LIVE.

👩 Скриншот.

👚 Возврат в главное меню режима регистратора.

6.6.4 Векторная диаграмма основных компонентов (векторы)

После выбора иконки 🙏 отобразится векторная диаграмма (пример на Рис. 6.16). Она представляет собой схему основных составляющих векторов напряжений и токов. Можно также её использовать для быстрой проверки правильности подключения регистратора к исследуемой сети.

Рядом с диаграммой находятся таблицы:

- Первая с информацией о значениях основных составляющих и их углах;
- Вторая с коэффициентами несимметрии по обратной последовательности (эти коэффициенты отображаются только для трёхфазной сети).

Характер нагрузки сигнализируется иконкой:

- катушки (индуктивная нагрузка), если угол между основными составляющими напряжения и тока (ф_{Uh1,Ih1}) больше нуля (напряжение опережает ток).
- ◄ конденсатора (емкостная нагрузка), если угол ф_{∪h1,lh1} отрицательный (ток опережает напряжение).

Рис. 6.16. Текущие показания – векторная диаграмма

Описание функциональных иконок:

Иконка выбора типа представления. Отобразится дополнительное меню, в котором можно изменить вид отображения режима LIVE.

👩 Скриншот.

👚 Возврат в главное меню режима регистратора.

6.6.5 Диаграмма / таблица гармоник

После выбора иконки **П** появляется режим отображения гармоник. Экран позволяет просмотр значений гармоник напряжений и токов, углов между гармониками тока и напряжения, коэффициентов соsф этих токов и коэффициентов гармонических искажений THD. Гармоники отображаются в графическом виде на гистограмме (по умолчанию) или в табличной форме.

Рис. 6.17 Текущие показания – гистограмма гармоник

Диаграмма содержит:

- Диаграмму для гармоник, которые были выбраны в меню Выбор данных для графика;
- Ползунок 📕 указатель мгновенных значений. Пользователь может переместить его в любое место диаграммы.

С правой стороны экрана видны этикетки отдельных сигналов. Отображается содержание гармоник в основном сигнале для тех гармоник, на которые указывает ползунок , Кроме того, нажатие на этикетку, скрывает соответствующую ей диаграмму (касается только режима диаграммы).

Описание функциональных иконок:

- Меню активных каналов. При нажатии открывается дополнительная панель меню с кнопками для включения или выключения отображения данной гармоники и переключения между представлением гармоник тока и напряжения. Активный канал сигнализируется оранжевым цветом иконки.
- Переключение к табличному виду гармоник (Рис. 6.18). В отдельных строках таблицы отображаются значения гармоник (от постоянной составляющей до 40-го ряда гармоник) или углы между гармониками тока и напряжения. В случае гармоник, значения могут

отображаться в абсолютных единицах (В/А) или в процентах относительно основной гармоники.

- Переключение к виду гистограммы.
- Иконка выбора типа представления. Отобразится дополнительное меню, в котором можно изменить вид представления режима LIVE.
- Ж Меню параметров диаграммы или таблицы. После выбора отображается дополнительная панель меню, предоставляющая несколько новых опций:

💵 – скрыть/показать основную гармонику (недоступно в табличном виде).

- [V,А] отображение значения в абсолютных единицах (вольты и амперы).
- [%] отображение значения в процентах относительно основной составляющей.
- 🧑 скриншот.
- 🛞 закрытие меню.
- 👚 Возврат в главное меню режима регистратора.

() 09:	17:36 2016-08-05	H 🖌 💿 🖇	F-x 3.6 GB wol	ne 🕺	
1	Odczyty bieżące - harmoni	czne			?
	UL1	UL2	UL3	U L 1	771.0mV
TUD	[%]	[%]	[%]	U L2	1.015V
THD	117.4	18.12	1450	1113	1 007\/
bot	1154	100.0	1459	013	1.0514
nu i	100.0	100.0	100.0	IL1	32.24mA
h02	3.214	1.337	6.286	11.2	26.21 -
h03	75.75	57.22	71.06	T L Z	26.31mA
h04	2.937	1.487	3.514	I L3	7.839mA
h05	34.09	22.44	24.22	I N	66.32mA
h06	2.297	1.005	3.171		
h07	37.33	24.19	34.56		
	- / - f _n :50 Hz	v 📀	test N		
U I 4			×	1	1

Рис. 6.18. Текущие показания – гармоники – табличный вид

6.7 ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ РЕГИСТРАЦИИ

После правильной настройки конфигурации можно запустить регистрацию, нажимая кнопку **СТАРТ**. Процесс регистрации сигнализируется красной иконкой **(2)** на верхней панели, звуковым сигналом (три коротких) и миганием красного светодиода.

Чтобы остановить регистрацию, необходимо нажать кнопку СТАРТ и подтвердить своё намерение в отобразившемся окне. Прекращение регистрации будет подтверждено звуковым сигналом (длинный и три коротких), цвет иконки регистрации изменится на зеленый (О), а красный светодиод перестанет мигать.

В случае заполнения карты памяти регистрация заканчивается автоматически.

6.7.1 Время регистрации

Максимальное время регистрации зависит от нескольких факторов, таких как:

• Ёмкость карты памяти;

- Время усреднения;
- Тип сети.

Несколько выбранных конфигураций опубликовано в Таблица 6.1. В последнем столбце представлено примерное время регистрации, когда карта памяти полностью пустая и имеет примерно 3,6 Гб свободного места. Если время усреднения отличается от выбранного для примерной конфигурации пользователя значения 1 секунда, то примерное время регистрации пропорционально увеличится – например, при усреднения 10 секунд продолжительность регистрации увеличится в 10 раз от установленного времени регистрации с усреднением 1 секунда.

Период усреднения	Тип сети (измерение токов)	Измерение токов	Примерное время регистрации при выделенном объеме 3,6 Гб
10 минут	3-фазная 4-х проводная	•	> 10 лет
10 минут	1-фазная	•	> 10 лет
1 секунда	3-фазная 4-х проводная	•	90 дней
1 секунда	3-фазная 4-х проводная		144 дня
1 секунда	1-фазная	•	250 дней
1 секунда	1-фазная		330 дней
1 секунда	3-фазная 3-х проводная	•	125 дней
1 секунда	3-фазная 3-х проводная		144 дня

Таблица 6.1. Ориентировочное время регистрации для нескольких примеров конфигурации.

6.7.2 Советы к регистрации

Перед началом регистрации следует обратить внимание на следующие вопросы:

- Необходимо проверить правильность времени в приборе. Если дата или время ошибочны, введите правильные данные в соответствии с гл.2.1.1.
- Необходимо проверить правильность подключения анализатора к тестируемой сети. Если иконка правильности подключения анализатора на верхней панели имеет вид? или Х, то прежде чем регистрация будет запущена, появится дополнительное окно, предупреждающее о потенциальной проблеме с подключением. Пользователь должен:
 - о подтвердить старт регистрации, несмотря на это, или
 - о отказаться от старта.
- Для получения дополнительной информации о потенциальной проблеме:
 - Необходимо вызвать окно контроля правильности подключения (гл.6.3.2).
 - Также может быть полезна проверка векторной диаграммы (гл.6.6.4) векторы напряжений и токов; последовательность чередования фаз в 3-фазной сети должна быть такой, чтобы фаза UL1 (UL1-2) была 0°, UL2 (UL2-3) примерно -120°, UL3 (UL3-1) примерно -240°. Оба коэффициента несимметрии (для напряжения и тока), показанные на этом экране, должны быть низкими (обычно меньше 10%).

- На экране осциллограмм можно проверить форму сигналов и действующие значения напряжений и токов.
- Правильность подключения токовых клещей можно определить проверкой знака (знаков) активной мощности – в большинстве случаев работы с потреблением энергиии знак будет положительный.
- Если проводится длительная регистрация, то необходимо обеспечить непрерывность питания путём подключения внешнего блока питания 12 В в разъем измерителя (на верхней панели в правом углу появится икона сетевой вилки).
- Карта памяти должна быть вставлена в слот и иметь достаточное количество свободного места (индицируется на верхней панели). Если на карте памяти мало свободного места для предполагаемого массива регистрации (зависит в т.ч. от времени усреднения, времени регистрации, типа сети), то необходимо освободить место, удалив предыдущие регистрации с карты (перейти к панели меню Настройки анализатора → Менеджер файлов).
- Регистрация принимает имя измерительной конфигурации, которая была активна в момент запуска и невозможно изменить его позже. Поэтому полезно предварительно присвоить конфигурации имя, описывающее измерение, чтобы легче было найти ее в списке регистрации (имя конфигурации можно изменить перед стартом, войдя в редактирование активной конфигурации).

6.8 АНАЛИЗ РЕГИСТРАЦИИ

Можно провести анализ зарегистрированных данных непосредственно при помощи самого измерителя, без дополнительного программного обеспечения. В область анализа входят:

- Общий просмотр регистрации время начала и окончания, средние значения напряжений и токов;
- Просмотр средних значений напряжений во всем интервале регистрации;
- Создание временных графиков любых зарегистрированных параметров (с ограничением до 1100 точек и 4 параметров на одном графике) с возможностью масштабирования и отметками моментов времени;
- Просмотр гистограммы гармоник (усредненные значения за весь период регистрации).

Возможен анализ регистрации уже завершенной и записанной на карту памяти, а также текущей регистрации.

На экране **Анализ регистрации – список регистраций** находится список регистрации (записи с символом **()**, сохраненные в памяти измерителя. Список можно прокручивать, передвигая пальцем вверх и вниз в пределах видимой области.

	1	2:37:49 2018-05-24	H	-	018	F-x	3.6 GB	wolne	×
	♪	Analiza rejestracji - li	sta rejestra	ıcji					(?)
	Түр			Nazwa				Rozmiar	Data -
	<u>s</u>	defaultConfiguration						4.7 KB	2018-04-25 13:02:56
1	<u></u>	defaultConfiguration						5.4 KB	2018-04-25 13:01:52
		-≁ f _e :50 Hz	ŶN		9	default reg	istration		đ

Чтобы открыть содержимое файла:

- Дважды коснитесь нужной позиции или ...
- … однократным касанием активируйте нужную позицию и нажмите иконку ().

	Analiza rejestracii - podsumowanie rejestracii									
LN I										
Konfigu	Konfiguracja rejestracji: 🞯 defaultConfiguration									
Start:	2018-04-25 13:02:50		Udr. MIN	Uán	Uinmax					
Stop:	2018-04-25 13:02:55	LT:	725.2mV (0.32%Un)	731.1mV (0.32%Un)	739.2mV (0.32%Un					
Czas tr	vania: 0d 0g 0m 6s	L2:	1.768V (0.77%Un)	2.823V (1.23%Un)	5.228V (2.27%Un					
		L3:	548.7mV (0.24%Un)	565.1mV (0.25%Un)	586.5mV (0.26%Ur					
)		N:	(%Un)	(%Un)	(%Un					
0			Ign mm	lán	láя мах					
		L1:	131.5mA	306.4mA	627.1mA					
		L2:	257.9mA	291.5mA	338.3mA					
		L3:	244.3mA	398.4mA	722.6mA					
		N:								
3	[w]				۲					
_			~							

Появится содержимое записи (резюме регистрации). На экране присутствуют следующие параметры:

- Старт время начала регистрации,
- Стоп время окончания регистрации,
- Продолжительность (регистрации).

Кроме того, отображены параметры напряжения и тока в фазных и нейтральном проводах:

- **U**_{SR MIN} минимальное среднее напряжение в скобках указано процентное значение относительно номинального напряжения Un.
- U_{SR} среднее напряжение в скобках указано процентное значение относительно номинального напряжения Un.
- U_{ŚR MAX} максимальное среднее напряжение в скобках указано процентное значение относительно номинального напряжения Un.
- Isr минимальный средний ток.
- I_{śr} средний ток.
- I_{śк мах} максимальный средний ток.

Описание функциональных иконок:

- 🚸 Раскрывающиеся опции графического анализа:
 - временной график регистрации (гл.6.8.1).
 - диаграмма гармоник (гл.6.8.2).
 - 🛞 закрытие меню.
- 👞 Возврат к менеджеру файлов
- 🚯 Калькулятор стоимости энергии (гл.6.8.3).
- 👚 Возврат в главное меню режима регистратора.

Минимум и максимум напряжений определяются из зарегистрированных **средних значений** (это не минимальные и максимальные значения RMS_{1/2}). Кроме значения в вольтах, в скобках показана процентная величина относительно номинального напряжения. Если какой-то канал не измерялся в данной конфигурации, то отображаются черточки.

Минимум и максимум токов определяются из **средних токов**. Если какой-то канал не измерялся в данной конфигурации, то отображаются черточки.

6.8.1 Временной график регистрации

а. Функциональное описание

Если в гл.6.8 шаг 3 выбрана иконка [🔊, то отобразится экран, показанный на Рис. 6.19.

() 13:15:32 2018-05-24	Η < 📀 🤋 F-x 📱	3.6 GB wolne 🕺 💷					
\Lambda Analiza rejestracji - Wykres c	zasowy - przedział czasu	?					
2018-04-25 13:01:37	15.001s	2018-04-25 13:01:52					
744.0 744.0 741.0 735.0 735.0 732.0 729.0 726.0		→] ▶ mV] 744.0 741.0 738.0 735.0 732.0 729.0 726.0					
1:38 1:40	1:42 1:44 1:46 [minuta.sekunda]	1:48 1:50 1:52					
<		4					
< 2018-04-25 13:01:37	15.001s	2018-04-25 13:01:52 >					
- f _n :50 Hz TN (Jefault registration							
The Q	•	1					

Рис. 6.19. Временной график регистрации

Диапазон данных, которые должны быть подвергнуты анализу, можно задать двумя способами:

- Перетаскивая иконки 💶 ד, расположенные выше графика или
- Вводя вручную значения даты и времени, а также интервал для анализа.

Czas początku							
Czas początku							
	Data		Czas				
Rok	Miesiąc	Dzień	Godzina	Minuta	Sekunda		
▼ 2018 ▲	▼ 04 ▲	▼ 25 ▲	▼ 13 ▲	▼ 01 ▲	▼ 37 ▲		
					k 🖉 Anuluj		

Nybierz zakres czasowy w odniesieniu do:							
🔵 Począ	itek	końca	3				
	Przeda	ział czasowy					
Dzień	Godzina	Minuta	Sekunda				
V 0	🔺 🔻 0 🎽	• • 0 •	▲ ▼ 15 ▲				

Рис. 6.20 Установка начала диапазона анализа Рис. 6.21 Настройка ширины диапазона анализа

		Czas	końca				
Czas końca							
	Data			Czas			
Rok	Miesiąc	Dzień	Godzina	Minuta	Sekunda		
▼ 2018 ▲	▼ 04 ▲	▼ 25 ▲	▼ 13 ▲	▼ 01 ▲	▼ 52 ▲		
				✓ C	lk 🖉 Anuluj		

Рис. 6.22 Установка окончания диапазона анализа

Иконки 🤜 🦻 сбрасывают диапазон анализа к первоначальным настройкам.

Описание функциональных иконок:

- Тум. Открывается меню Выбор данных для графика. На этом экране можно выбрать параметры, которые будут проанализированы. Подробное описание представлено в пункте b.
- Q Изменение масштаба отображаемого сигнала. После нажатия раскрывается меню с иконками:

- после выбора этой иконки, пальцем обведите на графике область, которая должна быть увеличена. График увеличится. После увеличения его можно передвигать пальцем вверх, вниз и в стороны.
- Q после выбора этой иконки, график уменьшится скачком.
- 🛞 выбор этой иконки закрывает меню масштабирования.
- 👞 возврат в меню Анализ регистрации резюме регистрации.

👩 Сделать снимок экрана (скриншот).

👚 Возврат в главное меню режима регистратора.

График таже можно масштабировать с помощью жестов. Чтобы его **увеличить**, **разведите** в противоположные стороны два пальца, касающиеся экрана. Для **уменьшения** – **приблизьте** друг к другу два пальца, касающиеся экрана.

b. <u>Выбор параметров для временного графика</u>

После выбора иконки **Ту** открывается экран **Выбор данных для графика**. Здесь можно выбрать параметры, которые будут проанализированы. Для каждой категории присвоены типы показаний, а для них – параметры, которые можно выбрать.

Доступные параметры (различные в зависимости от схемы сети):

- Напряжение Un
 - о URMS (действующее значение напряжения) для фаз L1, L2, L3 (A, B, C).
 - U L-L (линейное напряжение).
 - о f (частота) для фазы L1 (A).
- Ток
 - о I RMS (действующее значение тока) для фаз L1, L2, L3 (A, B, C).
- Мощность
 - Р (активная мощность) для фаз L1, L2, L3 (А, В, С) и сумма Σ.
 - Q1 (реактивная мощность) для фаз L1, L2, L3 (А, В, С) и сумма Σ.
 - Sn (мощность искажений) для фаз L1, L2, L3 (A, B, C) и сумма Σ.
 - о S (полная мощность) для фаз L1, L2, L3 (A, B, C) и сумма Σ.
 - о cosф для фаз L1, L2, L3 (A, B, C) и сумма Σ.
 - о PF (коэффициент мощности) для фаз L1, L2, L3 (A, B, C) и сумма Σ.
- Энергия
 - EP+ (активная энергия, потребляемая из сети) для фаз L1, L2, L3 (А, В, С) и сумма Σ.
 - о EP- (активная энергия, отдаваемая в сеть) для фаз L1, L2, L3 (A, B, C) и сумма Σ.

- о EQ+ (реактивная энергия, потребляемая из сети) для фаз L1, L2, L3 (A, B, C) и сумма Σ.
- о EQ- (реактивная энергия, отдаваемая в сеть) для фаз L1, L2, L3 (A, B, C) и сумма Σ.
- о ES (полная энергия) энергия для фаз L1, L2, L3 (A, B, C) и суммарная Σ.

• Гармоники U

- о THD U (коэффициент гармонических искажений) для фаз L1, L2, L3 (A, B, C).
- о Uh1...Uh40 (1...40-я гармоники напряжения) для фаз L1, L2, L3 (A, B, C).

В окне выбора параметров отображаются только те параметры, которые были зарегистрированы.

Для облегчения ориентации, из каких полей были выбраны параметры для графика, поля категории и типа будут выделены оранжевой рамкой, если они содержат какие-то выделенные параметры.

Если пользователь уже выделил четыре параметра, то при попытке отметить следующий отображается окно с сообщением об ограничении максимального количества параметров на графике.

Описание функциональных иконок:

- 🚸 Вызов временного графика.
- Снятие отметки со всех переменных.
- 👞 Возврат в меню **Временной график интервал времени**.
- 👚 Возврат в главное меню режима регистратора.

с. Создание и управление временным графиком

На экране **Выбор данных для графика** выбрать данные для отображения на графике:

- В столбце Категория выбрать нужную позицию, в столбце Тип выбрать требуемый параметр, а в последнем столбце отметить необходимую переменную (→ ✓);
- 🛛 Выбрать иконку **փ**.

Появится временной график. Он содержит:

- Сигналы величин, выбранных в меню **Выбор** данных для графика;
- Ползунок , · указатель мгновенных значений. Пользователь может переместить его в любое место на графике;
- Этикетки отдельных сигналов. Они отображают мгновенные значения показаний сигналов, соответствующие положению ползунка , на графике. Кроме того, прикосновение к этикетке скрывает график, который она представляет.

С правой стороны экрана видны:

- время начала регистрации.
- [©] время окончания регистрации.
- продолжительность регистрации.
- 🕓 🛛 время, соответствующее положению ползунка 晃 .

Описание функциональных иконок:

- Меню активных каналов. При выборе этой иконки открывается дополнительная панель меню с кнопками для включения или выключения отображения сигналов, установленных в шаге (1). Активный канал сигнализируется оранжевым цветом кнопки.
- Q Изменение масштаба отображаемого сигнала. После выбора иконки раскрывается меню с опциями:
 - после выбора этой иконки, пальцем обведите на графике область, которая должна быть увеличена. График увеличится; затем его можно передвигать пальцем вверх, вниз и в стороны
 - Q после выбора этой иконки, график уменьшится скачком
 - 🛞 🛛 выбор этой иконки закрывает меню масштабирования (можно также выбрать 📿)

Меню параметров графика или таблицы. После выбора отображается дополнительная панель меню, позволяющее выбрать описание шкалы справа и слева от графика. Для этого щелкните соответствующую иконку с названием параметра.

- иконка с названием единицы измерения появится тогда, когда на графике есть по крайней мере два параметра с идентичными единицами измерения. Выбор такой иконки вызовет масштабирование сигналов с такой же единицей измерения и привяжет их к одной общей шкале (описанной одним из общих параметров). Следует иметь в виду, что если не применяется общая шкала, то только один сигнал, единицы измерения которого привязаны к оси, масштабируется соответственно этой шкале, а его график адаптируется к размеру окна – другие, даже имеющие одинаковую единицу измерения, уже нет.

на возврат к экрану Выбор данных для графика.

🔞 Сделать скриншот.

График таже можно масштабировать с помощью жестов. Чтобы его увеличить, разведите в противоположные стороны два пальца, касающиеся экрана). Для уменьшения – приблизьте друг к другу два пальца, касающиеся экрана).

6.8.2 Диаграмма гармоник сигнала

Если в гл.5.8 шаг (3) выбрана иконка **П**, то отобразится экран как на Рис. 6.23. Рабочая область состоит из диаграммы, меню этикеток и меню функциональных иконок.

Этот экран позволяет просмотреть значения гармоник напряжений и токов, углов между гармониками напряжений и токов, коэффициентов cosф этих токов и коэффициентов THD. Гармоники отображаются в виде гистограммы (по умолчанию) или в табличной форме.

Рис. 6.23. Текущие показания – представление гармоник в виде гистограммы

Гистограмма содержит:

- Гармоники, которые были выбраны в меню Выбор данных для графика;
- Ползунок , указатель мгновенных значений. Пользователь может переместить его в любое место на графике.

С правой стороны экрана видны **этикетки** отдельных сигналов. Отображается **название гармоники**, а также её **доля** в основном сигнале для тех гармоник, на которые указывает ползунок **—**. Кроме того, нажатие на этикетку, скрывает соответствующую ей диаграмму.

Описание функциональных иконок:

- Меню активных каналов. При выборе иконки открывается дополнительная панель меню с кнопками для включения или выключения отображения данной гармоники и переключения между представлением гармоник тока и напряжения. Активный канал сигнализируется оранжевым цветом иконки.
- Ж Меню параметров диаграммы или таблицы. После выбора отображается дополнительная строка меню, предоставляющая несколько новых опций:
 - 📭 скрыть/показать основную гармонику.
 - [V,A] отображение значений в абсолютных единицах (Вольты и Амперы).
 - [%] отображение значений в процентах, относительно основной составляющей.
 - переключение к табличному виду гармоник (Рис. 6.24). В отдельных строках таблицы отображаются значения гармоник (гармоники до 40-го ряда и дополнительно для режима [%] также коэффициент THD).
 - 🛞 закрытие меню.

ヘ Возврат к предыдущему экрану.

🔟 Сделать снимок экрана (скриншот).

Возврат в главное меню режима регистратора.

()	3:55:23 2018-05-24	Η 🗸 Ι 🤅	🔊 🔒 F-х	🞬 3.6 GB wolne 🕺	
†	Analiza rejestracji - Harm	oniczne			?
			UL1 [V]		
h01			0.105		-
h02			0.003		
h03			0.050		
h04			0.002		
h05			0.017		
h06			0.002		
h07			0.010		
h08			0.002		
h09			0.014		
	- ^ - f _n :50 Hz	Ň	🗭 default re	gistration	
		٤ •		1	t i

Рис. 6.24. Текущие показания – представление гармоник в виде таблицы

6.8.3 Калькулятор стоимости энергии

а. <u>Функциональное описание</u>

Когда среди зарегистрированных измерителем параметров есть активная энергия E_P, можно рассчитать стоимость электроэнергии по тарифу, заданному пользователем. Чтобы перейти к экрану тарификатора, необходимо в панели меню на экране итогов регистрации (гл.6.7 шаг (3)) выбрать иконку (С. Отобразится экран стоимости электроэнергии, как на Рис. 6.25. Представленные на нем разделы показывают:

- Время регистрации ③ начало,) ④ конец и (④) продолжительность регистрации. В последней строке отображается (⑤) длительность регистрации, которая анализируется по алгоритму тарификатора (полные периоды агрегации). Алгоритм позволяет рассчитать стоимость электроэнергии только за полный интервал регистрации и нет возможности выбрать другой промежуток времени;
- Энергия в этом поле отображается общая активная энергия в киловатчасах, насчитанная в анализируемом интервале времени;
- Тариф круглосуточный в этой части отображается общая энергия в выбранной валюте в однотарифном варианте. Тариф этого типа представляет собой постоянную ставку за 1 кВт*ч, независимо от времени суток и дня недели. Тип тарифа (может быть изменён пользователем) отображается сверху;
- Тариф зональный показывает стоимость общей энергии в выбранной валюте в многотарифном варианте. Тариф этого типа позволяет назначить два постоянных интервала времени суток, в которых действуют независимые ставки за 1 кВт*ч и третью ставку, применяемую в остальное время суток. Тип тарифа (может быть изменен пользователем) отображается сверху. Настройка параметров ставок и тарифных зон осуществляется на панели конфигурации тарификатора.

Если пользователь раньше не использовал или не изменял настройки тарификатора, то регистратор использует настройки по умолчанию. Настройки тарификатора можно изменить, выбирая иконку 💥.

() 16:20:11 2017-03-06	?	🔕 🔒 C-6 🛛 🔛 3.7	GB wolne 🕺 💷
💼 Taryfikator energii			?
Czas rejestracji	Energia	Taryfa całodobowa	Taryfa strefowa
 ◊ 2017-03-03 16:26:00 ◊ 2017-03-06 13:22:34 ◊ 2d 20g 56m 33s ◊ 2d 20g 53m 59s 	[kWh] 288.3	C11 [PLN] 90.32	C12 [PLN] 91.25
∼ U _n : 230.0 V -≁ f _n :50	D Hz	♥ 1-ph-test-config	
*		0	đ

Рис. 6.25. Экран результатов тарификатора энергии

Описание функциональных иконок:

- 💥 Переход к панели конфигурации тарификатора энергии.
- 👞 Возврат к предыдущему экрану.
- 📷 Сделать снимок экрана (скриншот).
- 👚 Возврат в главное меню режима регистратора.

b. <u>Конфигурация тарификатора энергии</u>

Настройки тарификатора можно легко изменить, приспосабливая к индивидуальным потребностям. Калькулятор позволяет рассчитать стоимость электроэнергии по двум тарифам:

- Тариф круглосуточный в этой простейшей форме тарифа за весь исследуемый период действует одна ставка за каждый насчитанный киловаттчас, независимо от времени суток и дня недели;
- Тариф зональный более развитый тариф. Он позволяет установить три различные ставки, которые действуют в других интервалах времени:
 - Ставка зоны А можно ввести стоимость 1 кВт*ч для первого интервала времени суток (например, дневная ставка),
 - Ставка зоны В можно ввести стоимость 1 кВт*ч для второго интервала времени суток (например, ночная ставка),
 - о Ставка зоны С (интервалы времени, не охваченные зонами А и В).

Настройки тарификатора были разделены на два экрана (Рис. 6.26 и Рис. 6.27). Первый экран позволяет сконфигурировать следующие параметры:

 Валюта – можно выбрать из списка нескольких предопределённых валют (PLN, EUR, USD, RUB, INR) или задать собственную (до четырёх знаков), отображаемую в списке в последней строке и отмеченную звездочкой (*).

() 13:59:29 2018-05-24	H 🖌 📀 🤋 F-x	🖺 3.6 GB wolne 🕺 💷							
🚹 Taryfikator energii - Ustawiei	Taryfikator energii - Ustawienia								
Waluta	Taryfa całodobowa	Taryfa strefowa							
		Nazwa							
		C12							
	Nazwa	Stawka strefy A							
	C11	▼< 0.3627 >▲							
PLN	Stawka całodobowa	Stawka strefy B							
	▼< 0.3133 ▲	▼							
		Stawka strefy C							
		▼							
-Ve f.:50 Hz									
	← ←	6							

Рис. 6.26 Тарификатор энергии – Настройки

- Для круглосуточного тарифа:
 - Название круглосуточного тарифа (по умолчанию C11) после выбора поля имени, отображается панель для редактирования.
 - Круглосуточная ставка стоимость1 кВт*ч электроэнергии для круглосуточного тарифа. После выбора поля со значениями, отображается панель для редактирования. Значения можно изменить также с помощью иконок .
 Значения ставок можно ввести с точностью до четырёх цифр после запятой.
- Для зонального тарифа:
 - Название зонального тарифа (по умолчанию С12).
 - о Ставка за 1 кВт зоны А (оранжевый цвет).
 - о Ставка за 1 кВт зоны В (голубой цвет).
 - Ставка за 1 кВт зоны С (в другие периоды суток).

Интервалы времени суток, которые соответствуют зонам А, В и С, конфигурируются на втором экране настроек тарификатора (Рис. 6.27). Его главными элементами являются полосы, представляющие целые сутки, разделённые на 15-минутные блоки.

В упрощенном варианте эти же параметры зон применяются для всех дней в неделю (только комплект с иконкой (?). Однако, если возникла необходимость сконфигурировать другие интервалы времени для выбранных дней (например, субботы и воскресенья), то после выбора поля в нижней левой части окна, разблокируется второй набор интервалов времени, обозначенный иконкой (?). Необходимо выбрать, в какие дни недели должен действовать второй набор, отмечая поля выбора соответствующих дней недели.

Рис. 6.27 Тарификатор энергии – настройка расчётных зон в зональном тарифе

Интервалы времени зон А и В (соответственно оранжевого и голубого цвета) можно изменить:

- Нажимая на середину интервала, сдвигать весь интервал или
- Прикасаясь и перемещая левый или правый край интервала, изменить тем самым временные границы расчётной зоны.

Время начала и окончания отображается в средней части интервала. Принятое разрешение времени составляет **15 минут. Минимальная длительность времени** интервала - это **2 часа**.

Описание функциональных иконок:

Переход между двумя экранами конфигурации тарификатора.

- Возврат к экрану результатов тарификатора. Если настройки были изменены и сохранены, то результаты стоимости энергии будут автоматически пересчитаны и показаны.
- F Сохранение настроек тарификатора в памяти регистратора.
- 👚 Возврат в главное меню режима регистратора.

Настройки являются общими для всего регистратора (не связаны с конкретной регистрацией).

6.9 КАЛЬКУЛЯТОР ПОТЕРЬ ЭНЕРГИИ

6.9.1 Функциональное описание

В этом режиме можно оценить потери активной мощности и связанные с ним убытки по причине плохого качества электропитания. Экран анализа потерь представлен на Рис. 6.28. Анализ можно выполнить за желаемый отрезок времени.

§ 16:16:55 2018-07-20		×	🔘 🧏 F	-x	1.8 GB wolne 💸	
Kalkulator strat						(
P _{opt}	< 0.001	W	C _{opt}	< 0.01	PLN/Godzina	
P _{dis}	< 0.001	W	C _{dis}	< 0.01	PLN/Godzina	
Punb	< 0.001	W	Cunb	< 0.01	PLN/Godzina	
P _{rea}	< 0.001	W	C _{rea}	< 0.01	PLN/Godzina	
	< 0.001		C _{pf}	< 0.01	PLN/Godzina	
P _{tot}	< 0.001	W	C _{tot}	< 0.01	PLN/Godzina	
P _{sav}	< 0.001	W	C _{sav}	< 0.01	PLN/Godzina	
Godzina	\bigcirc	Dzień		Miesiąc	Rok	
-∿- f _n :50 Hz	YN		🗭 defaul	t registration		
Ť	, in the second	2	ĸ	©`]	1	

Рис. 6.28 Анализ потерь электроэнергии

Параметры, подлежащие анализу:

- Popt Потери мощности на сопротивлении Copt Стоимость, связанная с потерями Popt. проводов (при допущении отсутствия высших гармоник, асимметрии и реактивной мощности). **P**dis Потери, вызванные высшими Cdis Стоимость, связанная с потерями P_{dis}. гармониками. \mathbf{P}_{unb} Потери Cunb Стоимость, связанная с потерями Punb. мощности, вызванные несимметрией сети. C_{rea} \mathbf{P}_{rea} Потери мощности, вызванные Стоимость, связанная с потерями P_{rea}. присутствием реактивной мощности. Cpf Стоимость, связанная низким С (большая коэффициентом мощности доля реактивной мощности). \mathbf{P}_{tot} Итоговые потери (сумма Ctot Стоимость, связанная с потерями P_{rea}. вышеуказанного).
- P_{sav} Потери, которыми можно ограничить улучшение качественных параметров (например, компенсация гармоник, ликвидация асимметрии), вытекающие из соотношения: $P_{sav} = P_{tot} - P_{opt}$
- Csav Стоимость, связанная с потерями P_{sav}.
- Финансовые потери можно оценить на основании текущих показаний, за отрезок времени:
 - один час;
 - один день; •
 - один месяц; •
 - один год.

Активация одной из вышеперечисленных опций (🦳 🔿 🦲) приведёт к тому, что таблица будет отображать данные, соответствующие сделанному выбору.

Описание функциональных иконок:

- 💥 Переход к панели конфигурации калькулятора потерь (гл.6.9.2).
- 📷 Сделать снимок экрана (скриншот).

👚 Возврат в главное меню режима регистратора.

6.9.2 Конфигурация калькулятора потерь

После выбора иконки \bigotimes_{i} откроется конфигурационная панель калькулятора, представленная на Рис. 6.29 и Рис. 6.30. Можно переключаться между экранами с помощью иконок **(**

Przewód	Liczba	Przekrój [mm²]	Długość [m]
	• 3	▲ ▼ 16.00 ▲	-
N	• 1	▲ ▼ 16.00 ▲	800.00
Miedź	0.0196	Ωmm²/m	
Aluminium	0.0320	Ωmm²/m	

Рис. 6.29 Анализ потерь энерии – экран конфигурации 1

На первом экране необходимо задать параметры кабеля, который подвергается анализу, т.е:

- Для фазовых проводов L:
 - о количество жил данной фазы.
 - о **сечение** жил в мм².
- Для нейтральных проводов N:
 - о количество жил нейтралей.
 - \circ сечение жил в мм².
- Длина рассматриваемой линии в метрах;
- Материал линии медь или алюминий.

На основе этих параметров калькулятор рассчитает потери мощности в анализируемой линии.

	Cena en	ergii		
	Warto	ość	Waluta	
Energia czynna	• 0.000	020		
Energia bierna (Pl	F≥0,8) ▼ 0.000	020	PLN	
Energia bierna (Pl	F < 0,8) 🔻 0.000	050		
6.501		2018-07-	20.16.25.05 cotting	

Рис. 6.30 Анализ потерь энерии – экран конфигурации 2

На втором экране необходимо задать параметры, определяющие финансовые потери, то есть:

• Стоимость 1 кВт*ч активной энергии;

- Стоимость 1 кВт*ч реактивной энергии при коэффициенте мощности PF ≥ 0,8;
- Стоимость 1 кВт*ч реактивной энергии при коэффициенте мощности PF < 0,8;
- Валюта.

Чтобы изменить валюту необходимо:

- Коснуться поля с названием текущей валюты;
- Ввести новую валюту с помощью экранной клавиатуры.

Описание функциональных иконок:

(] Переход между двумя экранами конфигурации калькулятора.

- Возврат к экрану результатов калькулятора. Если настройки были изменены и сохранены, то результаты будут автоматически пересчитаны и показаны.
- 🔚 Сохранение настроек калькулятора.
- 👚 Возврат в главное меню режима регистратора.

7 ПАМЯТЬ ИЗМЕРИТЕЛЯ

7.1 ПАМЯТЬ ИЗМЕРЕНИЙ

7.1.1 Настройки памяти

Описание функциональных иконок:

- 🔹 Возврат к предыдущему экрану.
- 👚 Возврат в главное меню.

В главном меню выбрать Настройки.

Выбрать Настройки памяти.

Появятся два параметра.

- Заводские настройки возвращает память измерителя в настройки памяти по умолчанию. После выбора появится просьба о подтверждении.
- Форматирование карты. После выбора появится просьба подтвердить, что пользователь хочет отформатировать карту SD.

7.1.2 Организация памяти

Память результатов измерений имеет древовидную структуру (Рис. 7.1). Пользователь может записать в ней неограниченное количество клиентов. В каждом из клиентов можно создать любое количество объектов с подобъектами.

Рис. 7.1. Структура памяти измерители для отдельного клиента

а. Основы навигации по меню Память

Появится панель управления памятью.

	 13:54:12 2018-07-23 Klienci 				Описание функциональных иконок:	
		Lista klientów		Na	zwa	Позиция неактивна.
	Default Client	DefaultClient	ent Adres		fres	✔ Позиция активна.
2	Client 1	Client 1		E-mail	Numer telefonu	ф Возврат к предыдущему экрану.
	cli1 Sonel				Переход на более низкий уровень активной (
				Usoba k	ontaktowa	позиции.
					• #	✓Переход к дереву каталогов активного
						(🖌)клиента.
						👚 Возврат в главное меню.

📺 Запись активной позиции на карту памяти SD. Раскрывающееся меню управления активной позицией.

(13:54:35 2018-07-23 100 % 💷 🖬 🖞 1 _ Nazwa Default Olient DefaultClient Wokulskiego 11 58-100 Swidnica (3) Client E-mail Client 1 umer telef 1 748583800 cli1 I Sonel Q ŵ ۲ ÷ Ø

🖹 🛛 🚛 🚺 🕺 100 % 📖 🛱

ŧ.

Описание функциональных иконок в меню редактирования:

- +Добавление нового клиента.
- 🖉 Редактирование активного клиента.
- **Q** Режим поиска (гл.7.1.4).
- 💼 Удаление активного клиента.
- 🕱 Закрытие меню.

🕇 Loka nel / _ DEFAULT_LOCATIO (4) Ν lok2 loc1.3 ~ 1 ... Ħ (13:55:31 2018-07-23 🕅 🛛 🚛 🚺 100 % 📖 🖓 📩 Lokalizacje i nel / loc1.3 / loc1.3.2 / Punkty pomiarowe (5) MeasuringPoint1 pp1

③ 13:55:01 2018-07-23

÷

izacie i r

Чтобы перейти на более низкий уровень дерева каталогов, необходимо:

- Активировать нужную позицию $(\rightarrow \checkmark);$
- Выбрать иконку 🏟.
- Для перехода на более высокий уровень • дерева каталогов, выбрать иконку 🖛;
- Чтобы перейти на несколько уровней выше, • выберите имя нужного каталога на верхней панели навигации.

() 13:56:02 2018-07-23 🔒 кі Default Client DefaultClient (1)Client Client 1 1 cli1 Sonel ۲ ÷ Q, 22

b. Добавление нового дерева измерений

С помощью иконки 🕂 добавить нового клиента.

	() 13:56:22 2018-07-23		N 100 % 🗰 🐺
	👚 Dodawanie klienta		?
	ID		Nazwa
(2)	Adres	Miasto	Kod pocztowy
\bigcirc			
	Numer telefonu	E-mail	Osoba kontaktowa
	•	B	t t

Прикоснуться и заполнить нужные поля на экранной клавиатуре:

- ID клиента;
- Имя; •
- Адрес;
- Город;
- Почтовый индекс; •
- Номер телефона;

	13:58:22 2018-07-23	ì	100 % 💵 🐺			
	👚 Dodawanie klienta		?			
	ID		Nazwa			
	cli2		Sonel S.A.			
	Adres	Miasto	Kod pocztowy			
4	Wokulskiego 11	Swidnica	58-100			
	Numer telefonu	E-mail	Osoba kontaktowa			
	+48748583800	bok@sonel.pl	Jan Kowalski			
	•		Ť			

	 ① 13:58:35 2018-07-23 Clienci 				¥ 💷 ≈ 100 % 💷 ¥			
5	Lista klientów				Nazwa			
	Default Client	DefaultClient		ľ	Adres			
	Client 1	Client 1		ļ	Wokulskiego 11 E-mail	skiego 11 58-100 Swidnica Numer telefonu		
	cli2	Sonel S.A.		ļ	bok@sonel.pl	ntoktow	+48748583800	
	cli1 Sonel			Jan Kowalski				
	•	•					f	

- e-mail;
- Контактное лицо.

Ввести имя с сенсорной клавиатуры.

Функции символов:

- Отклонение изменений и возврат к шагу (2)
- Принятие изменений и переход к шагу ④
 - Нажмите иконку 🔄 для сохранения изменений;
 - Произойдёт возврат в меню управления клиентами.
 - Нажатием активировать выбранного клиента (→);
 - Выбрать иконки и ланных;
 - Дальнейшие действия аналогичны шагам
 (2)3(4);
 - Для перехода на более низкий уровень дерева, необходимо:
 - дотронуться до этикетки нужной позиции.
 - о активировать нужный пункт и выбрать 🛹.

Создание нового клиента приводит к назначению места по умолчанию для измерений.

	313:59:10 2018-07-23		ih. 🕅	100%
	👚 Lokalizacje i punkty pomiarowe			?
	Sonel S.A. /			
	Lokalizacje			
\bigcirc	DEFAULT_LOCATIO			
\bigcirc	N			
		0		Ø
	T	~		٢

	13:59:30 2018-07-23				
	👚 Dodawanie lokalizacji		()		
	ID	Naz	zwa		
	lok3				
\bigcirc	Adres	Kod pocztowy	Miasto		
\bigcirc					
	E-mail	Numer telefonu	Osoba kontaktowa		
	+		đ		

Чтобы добавить новое место необходимо:

- Нажатием активировать столбец Место;
- С помощью иконки 🔛 раскрыть меню редактирования и выбрать +;
- Действовать аналогично, как в шагах (2)(3).

В поле Имя можно задать список имён для последующего использования.

- Прикоснуться к полю создания нового имени и присвоить его, так же как в шаге (3).
- С помощью иконки 🕂 добавить созданную позицию в список имён.
- Выбрать нужный пункт и с помощью иконок: • 🔊 отредактировать имя. 💼 удалить имя.

Нажатием присвоить место из списка заданной локализации дерева (— \rightarrow \checkmark).

Оk – принять все изменения. Отмена – отменить изменения.

Ħ

- Нажмите иконку для сохранения • изменений;
- Произойдёт возврат в меню управления локализациями.
- Активировать нужную локализацию (— \rightarrow \checkmark);
- Выбрать 🏟, чтобы перейти на нижний уровень дерева.

	14:00:44 2018-07-23		N	×
	👚 Lokalizacje i punkty pomiarowe			?
	Sonel S.A. / loc1.3 /			
	Lokalizacje		Punkty pomiarowe	
(12)				
	+	Q,		۲
				Ť

	14:01:26	2018-07-23		N. 🛛	100%
	🔒 Lokaliza	cje i punkty pomiarowe			?
	Sonel S.A. / Io	p1.3 /			
		Lokalizacje		Punkty pomiarc	owe
(13)		loc1.1			
\cup		loc1.2			
	+	Ø	Q,	Ē	(*)

	14:01:50 2018-07-23		100	×
	Lokalizacje i punkty pomiarowe			?
	Sonel S.A. / loc1.3 / loc1.2 /			
	Lokalizacje			
11				
U				
	+	à		۲
	Ť Ť		Ť	Ť

Появится экран локализации и точек измерения.

- Нажатием активировать столбец Место;
- С помощью иконки раскрыть меню редактирования и выбрать +;
- Действовать аналогично, как в шагах (2) (3) (4) и (8) (9) (10).
- Активизировать нужную локализацию (→
 ✓).
- Нажать иконку
 для перехода на нижний уровень меню.
- В случае необходимости повторить шаги (12)(13).
- С помощью иконки **—** раскрыть меню редактирования и выбрать:
 - для редактирования локализации (как в шагах (8)(9)(10).
 - **Q** для входа в режим поиска (гл.7.1.4).
 - 💼 для удаления.
- С помощью иконки раскрыть меню редактирования и выбрать +, чтобы добавить новую точку измерения (шаг (15)).

Прикоснуться и заполнить с экранной клавиатуры нужные поля:

- ID точки;
- Имя;
- Описание;
- Производитель;
- Модель;
- Серийный номер;
- Цикл измерения;
- Год выпуска;
- Класс безопасности;
- Номинальное напряжение;
- Номинальный ток;
- Номинальная мощность.

	 14:02:44 2018 Lokalizacje i p 	3-07-23		 , 🛛	100% 💵	• #	
(16)	Sonel S.A. / loc1.3 /	loc1.2 / Lokalizacje	pp1	Punkty pomiarov MeasuringPo	ve pint1	 	Точка измерения сохранена.
Ū	•	*			Ť		1

Описание иконок в меню редактирования:

- + Добавление новой точки.
- 🖉 Редактирование активной точки.
- Q Режим поиска (гл.7.1.4).
- 💼 Удаление активной точки.
- 🛞 Закрытие меню.
- Возврат к предыдущему экрану.
- 📘 Сохранение изменений.
- 👚 Возврат в главное меню.

В одну ячейку столбца **Точки измерения** можно записать результаты измерений, выполненные для всех измерительных функций.

В память можно ввести только результаты измерений, запускаемых кнопкой **СТАРТ** (за исключением автоматического обнуления при низковольтном измерении сопротивления).

В памяти сохраняется набор результатов (основной и дополнительный) данной функции измерения, установленные параметры измерения, дата и время выполнения измерения.

7.1.3 Запись результата измерения

- После выполнения измерения выбрать иконку
 ;
- Появится меню Запись результатов измерения (меню и управление такое же как в гл.7.1.1).
- Выбрать нужную локализацию;
- В случае наобходимости создать новую локализацию в соответствии с разделом b гл.7.1.2.

	① 15:59 ② Zap):32 2018-07-20	pomiaru		N	llı.	92 %	····
	Sonel / Ic	uc1.37	zacje		Punkty po	omiarowe		 I
3		loc1	.3.1	p01	Poin	t 01		
		loc1	.3.2					
	+	•	*				đ	

- Выбрать в локализации нужную точку • измерения или создать новую в соответствии с разделом b гл.7.1.2 шаги (14(15(16);
- Нажмите чтобы иконку Η, сохранить результат в память;
- В случае отказа от записи, вернуться к экрану измерения, нажав иконку ヘ.

Управление объектами и подобъектами возможно как в режиме записи в память, так и при её просмотре (гл.7.1.4).

7.1.4 Просмотр сохраненных измерений

	(14:26:58 2018-07-23		N 100	× (1111) †
	Lokalizacje i punkty pomiarowe			?
	Sonel / loc1.3 /			
	Lokalizacje		Punkty pomiarowe	
(2)	loc1.3.1	pp2	MeasuringPoint	1
\bigcirc	loc1.3.2			
	+ +			đ

- Перейти к локализации с точкой измерения, в • которой были сохранены результаты измерений;
- Активировать нужную точку измерения (\rightarrow • **~**);
- Нажать перехода иконку для к . содержимому точки измерения.

Отобразится список измерений, содержащихся в активной точке.

	14:27:23 2018-07-	-23	v 🛛 🗤 🖉	100%			
	Punkt pomiarowy			?	Описание	V	1НДИ
	Sonel / loc1.3 / loc1.3.2	/			COOTBETCTB	и <u>е за</u> л	200
	ID pp1	Nazwa MeasuringPoint1	Pomiary			лс зад	Janni
3	0	pis	E Luksomierz		Ø-	- усло	зие
U	Dreducent	Madel	2018-07-20 22:42:23		⊗-	- услоі	зие
	Producent	Model	2018-07-20 22:41:28		<u> </u>	- лими	ит Ц <i>е</i>
	Cykl pomiarowy	Numer seryjny	RCD I _A 2018-07-20 22:41:12		0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				Ť	Чтобы выз	звать	мен
						-	

-8.1

икаторов, сигнализирующих юму лимиту: выполнено.

- не выполнено.
- е установлен.

ню управления измерениями, следует активировать необходимые записи (\rightarrow **~**).

Описание функциональных иконок:

- 🛑 Возврат к предыдущему экрану.
- Переход к детализации (шаг 5).
- 💼 Удаление активной записи.
- 👚 Возврат в главное меню.

7.1.5 Доступ к записям измерений

	() 22:0	3:37 2021	1-01-12		14.9 GE	wolne	.ul I	92 %		¥
	E Kli	enci List	a klientów				Nazwa			0
		OBIE	EKT1	 Image: A start of the start of		0	BIEKT1			
1		KAZIN A W 4	AIERZ 15 M8							
	Arłam ów	Stacj	a test							
		+	ſ	i+	0	pi a	•@		۲	
						•	\$			

Выбрать иконку **«**. Доступны следующие опции:

импорт всех клиентов из карты памяти в измеритель,

экспорт выбранных клиентов на карту памяти, О отправка выбранных клиентов по e-mail,

• @ создание отчёта в формате PDF и отправка его по e-mail.

При необходимости отметить клиента (— → ✓), который должен подвергнуться данному действию.

Выбрать иконку с нужным действием.

Перед отправкой данных по e-mail необходимо настроить исходящий почтовый ящик. Смотри гл.2.3.3.

7.1.6 Поиск в памяти измерителя

Описание других функциональных иконок:

- 🔹 🛛 Возврат к предыдущему экрану
- 👚 Возврат в главное меню

7.2 ПАМЯТЬ РЕГИСТРАТОРА

7.2.1 Карта памяти microSD

Сменная карта памяти microSD HC – основное хранилище данных измерителя. В ней записаны:

- Зарегистрированные данные измерения;
- Файлы скриншотов.

На верхней панели отображается статус карты и доступное свободное место.

Чтобы обеспечить правильную работу измерителя и защититься от потери данных, не следует:

 Извлекать карту памяти во время регистрации. Удаление карты памяти грозит прерыванием регистрации, повреждением зарегистрированных данных, а в некоторых случаях повреждением всей структуры файлов на карте памяти.

- Из любого места меню просмотра памяти выбрать и Q.
- Отобразится меню поиска;
- В поле Параметры выбрать тип разыскиваемого объекта: локализация или точка измерения;
- В случае необходимости отметить Найти всех клиентов (→ → →);
- В поле Имя ввести с экранной клавиатуры фразу поиска;
- Выбрать Поиск.
- Активировать нужный результат
 (□ → ✓).
- Нажать иконку
 для перехода к детализации.
- После выбора иконки пакже доступно редактирование записи в соответствии с разделом b гл.7.1.2, шаги (8) (9)(10).

 Изменять или удалять файлы, сохраненные на карте или записывать собственные файлы. Если при установке карты измеритель обнаружит ошибку системы файлов, то отобразится панель форматирования памяти прибора для выполнения форматирования карты. Только после форматирования (и что за тем следует – удаления всех файлов) измеритель сможет снова использовать карту.

Кроме того, перед извлечением карты из измерителя (например, для считывания данных в Sonel Analysis) рекомендуется сначала выключить измеритель, чтобы сохранились данные из буфера. Карту памяти microSD можно отформатировать с уровня интерфейса пользователя. Необходимо перейти в Настройки анализатора, а затем выбрать секцию Память, где пользователь имеет возможность отформатировать выбранную память (смотри также гл.7.1.1).

7.2.2 Внешняя память USB (флэшка)

Подключение внешней переносной памяти USB типа флэшки позволяет:

- Копировать выбранные файлы скриншотов с карты памяти microSD на флэшку;
- Записывать файлы журнала измерителя (логи) в случае ошибки прибора с целью проведения анализа в сервисной службе производителя;
- Выполнить обновления внутреннего программного обеспечения измерителя.

Поддерживаемая система файлов - это FAT32. После вложения карты памяти, отформатированной в другой системе файлов, отобразится окно, информирующее об обнаружении неотформатированного носителя. В этом окне пользователь может перейти непосредственно на экран форматирования.

Данные на флэшке записываются в папке с именем "TMM-540_DATA".

7.2.3 Работа с программой Sonel Analysis

Программа *Sonel Analysis* — это приложение, используемое для работы с измерителем TMM-540 и анализатором типа PQM. В сочетании с вышеуказанными приборами она позволяет:

- Считывать данные из регистратора;
- Просматривать сети в режиме реального времени;
- Представлять данные в форме таблиц;
- Представлять данные в виде графиков;
- Обновлять до последних версий внутреннее программное обеспечение (прошивку) анализаторов и само приложение.

Программа совместима с операционными системами Windows XP, Windows Vista, Windows 7, Windows 8 и Windows 10.

Подробное руководство пользователя для работы с программой *Sonel Analysis* доступно в отдельном документе (также можно загрузить с сайта производителя http://www.sonel.ru/).

7.2.4 Подключение к ПК и передача данных

Соединение с компьютером (режим ПК) позволяет осуществить передачу данных, сохранённых в памяти регистратора — возможно считывание данных всех завершённых регистраций.

- После подключения к ПК на дисплее появится надпись "Соединение с ПК";
- Во время подключения к ПК блокируются все клавиши кроме (), если конечно регистратор не работает с включенным режимом блокировки клавиш (например, во время

регистрации) — когда все клавиши заблокированы. На нижней панели экрана отображается символ (🗷), нажатие которого приводит к разрыву соединения с ПК;

 Если после подключения к ПК в течение 10 секунд не произойдет никакого обмена данных между прибором и компьютером, то измеритель выйдет из режима передачи данных и завершит соединение.

Программа Sonel Analysis также позволяет считывать данные прямо с карты microSD, используя внешнее считывающее устройство для карт памяти. Такой способ позволяет быстро считать зарегистрированные данные. Для использования этого режима, необходимо извлечь карту памяти из измерителя и переложить её в считыватель, подключенный к компьютеру (при извлечении карты памяти необходимо соблюдать правила, изложенные в гл.7.2.1; самый безопасный способ – это предварительное выключение измерителя).

8 ПИТАНИЕ ИЗМЕРИТЕЛЯ

8.1 КОНТРОЛЬ РАЗРЯДА АККУМУЛЯТОРА

Прибор оснащён пакетом аккумуляторов Li-lon 11,1 В 3,4 Ач. Пакет содержит в себе схему контроля состояния заряда аккумулятора, который позволяет точно указывать фактический уровень его заряда и датчик температуры.

Уровень заряда аккумулятора постоянно индицируется значком на верхней панели экрана справа (гл.2 элемент 2).

- Отсутствие аккумулятора.
- Отсутствие связи с пакетом аккумуляторов.

8.2 ЗАМЕНА АККУМУЛЯТОРОВ

Измеритель ТММ-540 питается от фирменного пакета Li-Ion аккумуляторов SONEL.

Зарядное устройство установлено внутри прибора и совместимо только с фирменным пакетом акумуляторов. Питается оно от внешнего блока питания. Возможно питание от гнезда прикуривателя автомобиля. Пакет аккумуляторов, как и зарядное устройство, входят в стандартный комплект измерителя.

?

Оставление измерительных проводов в гнёздах во время замены батареек (аккумуляторов) может привести к поражению опасным напряжением.

Внутренние часы реального времени питаются от аккумулятора, поэтому, чтобы показания часов не обнулились, замену необходимо выполнять при подключенном питании 12 В постоянного напряжения.

Для замены пакета аккумуляторов необходимо:

- Вынуть все измерительные провода из разъёмов и выключить измеритель;
- Подключить питание от внешнего блока питания 12 В постоянного напряжения (чтобы установки даты и времени не обнулились);
- Открутить 4 винта крепления контейнера для аккумуляторов (снизу корпуса Рис. 8.1);
- Вынуть контейнер аккумуляторов;
- Снять крышку контейнера и извлечь аккумуляторы;
- Вставить новый аккумулятор;
- Вставить (защелкнуть) крышку контейнера;
- Вставить контейнер в измеритель;
- Закрутить 4 винта крепления контейнера.

Рис. 8.1. Замена пакетов аккумуляторов

Нельзя использовать измеритель с извлеченным или не до конца вставленным контейнером батарей (аккумуляторов), а также питание его от других источников, кроме перечисленных в данном руководстве.

8.3 ЗАРЯДКА АККУМУЛЯТОРОВ

Зарядка аккумулятора начинается автоматически после подключения к прибору:

- Блока питания 12 В постоянного напряжения;
- Кабеля для зарядки от автомобильного прикуривателя.

Зарядка сигнализируется иконкой 👾 рядом с символом батарейки на верхней панели и светодиодом **H.V./REC/CONT.**. Температура аккумулятора и окружающей среды оказывает влияние на процесс зарядки. Если температура аккумулятора ниже 0°С или выше 45°С, процесс зарядки останавливается.

Сигнализация статуса аккумулятора:

- Зарядка:
 - о измеритель выключен светодиод H.V./REC/CONT. горит зеленым цветом 📨 🦲
 - о измеритель включен зарядка сигнализируется только значком на дисплее 🗡 🥅

- Неисправность:
 - измеритель выключен светодиод H.V./REC/CONT. мигает зелёным цветом каждые
 0,5 секунды
 - измеритель включен ошибка сигнализируется значком на дисплее <a>[7]

Из-за помех в сети или очень высокой температуры окружающей среды может произойти преждевременное прекращение зарядки аккумуляторов. В случае слишком короткого времени заряда необходимо выключить измеритель и начать зарядку снова.

8.4 ОБЩИЕ ПРАВИЛА ПРИМЕНЕНИЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ (LI-ION)

Аккумуляторы следует хранить заряженными на 50% в пластиковом контейнере, в сухом, прохладном и хорошо вентилируемом помещении, а также защитить их от прямых солнечных лучей. Хранение аккумулятора в полностью разряженном состоянии, приведёт к его неисправности. Температура окружающей среды при длительном хранении должна поддерживаться в пределах 5...25°С.

Заряжайте аккумуляторы в прохладном и проветриваемом месте при температуре 10...28°С. Современные быстрые зарядные устройства определяют как слишком низкую, так и слишком высокую температуру аккумуляторов и соответствующим образом реагируют на эти ситуации. Слишком низкая температура должна предотвратить начало процесса зарядки, который может необратимо повредить аккумулятор. Повышение температуры может привести к утечке электролита и даже возгоранию или взрыву аккумулятора.

Не превышайте зарядный ток, потому что это может привести к воспламенению или "вздутию" аккумулятора. "Вздутый" аккумулятор нельзя использовать.

Не заряжайте и не используйте аккумулятор при экстремальных температурах. Экстремальные температуры снижают срок службы аккумуляторов. Строго соблюдайте диапазон номинальной рабочей температуры. Не бросайте аккумуляторы в огонь.

Li-lon ячейки чувствительны к механическим повреждениям. Такие повреждения могут привести к стойкой неисправности, а что за тем следует – воспламенению или взрыву.

Любое вмешательство в структуру Li-lon аккумулятора может привести к его повреждению. Результатом этого может быть воспламенение или взрыв.

В случае короткого замыкания + и — полюсов аккумулятора может дойти до его серьезного повреждения и даже до воспламенения или взрыва.

Нельзя погружать Li-lon аккумулятор в жидкость или хранить в условиях высокой влажности.

В случае попадания электролита, который находится в Li-Ion аккумуляторе, в глаза или на кожу, немедленно промойте эти места большим количеством воды и обратитесь к врачу. Ограничьте доступ к аккумулятору посторонних лиц и детей.

При обнаружении каких-либо изменений в аккумуляторе Li-lon (в том числе, цвет, вздутие, высокая температура) немедленно прекратите его использование. Li-lon аккумуляторы с

механическими повреждениями, перезаряженные или чрезмерно разряженные не подходят для использования.

Использование аккумулятора не по назначению может привести к необратимому повреждению, которое может вызвать его воспламенение. Продавец вместе с производителем не несут никакой ответственности за возможный ущерб, возникший в результате неправильного обращения с Li-lon аккумулятором.

9 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

9.1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Сокращение «и.в.» в определении основной погрешности означает измеренное значение. Сокращение «е.м.р.» для основной погрешности означает единиц младшего разряда.

9.1.1 Измерение переменного напряжения (True RMS)

Диапазон	Разрешение	Основная погрешность
0299,9 B	0,1 B	±(2% и.в. + 4 е.м.р.)
300500 B	1 B	±(2% и.в. + 2 е.м.р.)

• Диапазон частоты: 45...65 Гц.

9.1.2 Измерение частоты

Диапазон	Разрешение	Основная погрешность
45,065,0 Гц	0,1 Гц	±(0,1% и.в. + 1 е.м.р.)

• Диапазон напряжения: 50...500 В.

9.1.3 Измерение сопротивления петли короткого замыкания Z_{L-PE}, Z_{L-N}, Z_{L-L}

Измерение сопротивления петли короткого замыкания Zs

Диапазон измерения по ГОСТ IEC 61557-3-2013:

Измерительный провод	Диапазон измерения Z _s
1,2 м	0,13 Ом1999,9 Ом
5 M	0,17 Ом1999,9 Ом
10 M	0,21 Ом1999,9 Ом
20 м	0,29 Ом1999,9 Ом
WS-03, WS-04	0,19 Ом1999,9 Ом

Диапазон отображения:

Диапазон отображения	Разрешение	Основная погрешность
019,999 Ом	0,001 Om	±(5% и.в. + 0,03 Ом)
20,00199,99 Ом	0,01 Ом	±(5% и.в. + 0,3 Ом)
200,01999,9 Ом	0,1 Ом	±(5% и.в. + 3 Ом)

Номинальное рабочее напряжение U_{nL-N}/ U_{nL-L}: 110/190 В, 115/200 В, 127/220 В, 220/380 В, 230/400 В, 240/415 В;

- Диапазон рабочего напряжения: 95...270 В (для Z_{L-PE} и Z_{L-N}) и 95...440 В (для Z_{L-L});
- Номинальная частота сети fn: 50/60 Гц;
- Рабочий диапазон частоты: 45...65 Гц;
- Максимальный измерительный ток (для 415 В): 41,5 А (10 мс);
- Контроль правильности подключения контакта РЕ с помощью сенсорного электрода.

Индикация активного R_s и реактивного X_s сопротивления петли короткого замыкания

Диапазон отображения	Разрешение	Основная погрешность
019,999 Ом	0,001 Ом	±(5% + 0,05 Ом от значения Z _s

• Расчет и отображение для значения Z_s < 20 Ом.

Индикация тока короткого замыкания I_k

Измерительные диапазоны по ГОСТ IEC 61557-3-2013 можно рассчитать из диапазонов измерения для Z_s и номинальных напряжений.

Диапазон отображения	Разрешение	Основная погрешность
0,0551,999 A	0,001 A	
2,0019,99 A	0,01 A	Рассчитывается на
20,0199,9 A	0,1 A	основании погрешности для
2001999 A	1 A	петли короткого
2,0019,99 кА	0,01 кА	замыкания
20,040,0 кА	0,1 кА	

 Ожидаемый ток короткого замыкания, рассчитанный и показанный измерителем, может немного отличаться от значения, вычисленного пользователем с помощью калькулятора, основываясь на отображаемом импедансе, потому что измеритель рассчитывает ток с неокруглённым для отображения значением сопротивления петли короткого замыкания. За правильное значение необходимо принять значение тока I_k, отображаемое измерителем или фирменным программным обеспечением.

9.1.4 Измерение сопротивления петли короткого замыкания Z_{L-PE[RCD]} (без срабатывания выключателя УЗО)

Измерение сопротивления петли короткого замыкания Zs

Диапазон измерения по ГОСТ IEC 61557-3-2013:

- 0,5...1999 Ом для проводов 1,2 м, WS-03 и WS-04
- 0,51...1999 Ом для проводов 5 м, 10 м и 20 м

Диапазон отображения	Разрешение	Основная погрешность	
019,99 Ом	0,01 Ом	±(6% и.в. + 10 е.м.р.)	
20,0199,9 Ом	0,1 Ом	$\pm (6\% \mu_{\rm P} + 50 \mu_{\rm P})$	
2001999 Ом	1 Ом	⊥(0% и.в. + 5 е.м.р.)	

- Не вызывает срабатывания выключателей УЗО с І_{∆п} ≥ 30 мА;
- Номинальное рабочее напряжение Un: 110 В, 115 В, 127 В, 220 В, 230 В, 240 В;
- Диапазон рабочего напряжения: 95...270 В;
- Номинальная частота сети f_n: 50/60 Гц;
- Рабочий диапазон частоты: 45...65 Гц;
- Контроль правильности подключения контакта РЕ с помощью сенсорного электрода.

Индикация активного R_s и реактивного X_s сопротивления петли короткого замыкания

Диапазон отображения	Разрешение	Основная погрешность
019,99 Ом	0,01 Ом	±(6% + 10 е.м.р.) от значения Z _s

• Расчёт и отображение для значения Z_s < 20 Ом.

Индикация тока короткого замыкания I_k

Измерительные диапазоны по ГОСТ IEC 61557-3-2013 можно рассчитать из диапазонов измерения для Z_s и номинальных напряжений.

Диапазон отображения	Разрешение	Основная погрешность
0,0551,999 A	0,001 A	
2,0019,99 A	0,01 A	Рассчитывается на
20,0199,9 A	0,1 A	основании погрешности для
2001999 A	1 A	петли короткого
2,0019,99 кА	0,01 кА	замыкания
20,040,0 кА	0,1 кА	

 Ожидаемый ток короткого замыкания, рассчитанный и показанный измерителем, может немного отличаться от значения, вычисленного пользователем с помощью калькулятора, основываясь на отображаемом импедансе, потому что измеритель рассчитывает ток с неокругленным для отображения значением сопротивления петли короткого замыкания. За правильное значение необходимо принять значение тока I_k, отображаемое измерителем или фирменным программным обеспечением.

9.1.5 Измерение параметров выключателей УЗО

- Измерение параметров выключателей УЗО типа: АС, А, В, В+, F;
- Номинальное рабочее напряжение Un: 110 В, 115 В, 127 В 220 В, 230 В, 240 В;
- Диапазон рабочего напряжения: 95...270 В
- Номинальная частота сети f_n: 50/60 Гц
- Рабочий диапазон частоты: 45...65 Гц

Тест отключения УЗО и измерение времени срабатывания t_A (для функции измерения t_A)

Диапазон измерения по ГОСТ IEC 61557-6-2013: 0 мс ... до верхней границы отображаемого значения

	Миоуинтоль	Диапазон	Разрешение	Основная
1011 350	иножитель	измерения	газрешение	погрешность
Общего типа	0,5 I _{∆n}	0300 мс (TN/TT)		
и с малой	$1 I_{\Delta n}$	0400 мс (IT)		
задержкой	2 I _{Δn}	0150 мс		
срабатывания	5 I _{Δn}	040 мс	1 мс	$+(2\% + p + 2 - m p)^{1}$
Селективные	0,5 I _{∆n}	0.500 мс	I MC	⊥(2 ⁄0 и.в. + 2 е.м.р.) ⁄
	1 I _{Δn}	0500 MC		
	2 I _{Δn}	0200 мс		
	5 I _{∆n}	0150 мс		

¹⁾ для I_{Δn} = 10 мА и 0,5 I_{Δn} погрешность составляет ±(2% и.в. + 3 е.м.р.)

 Точность задания дифференциального тока: для 1*І_{Δп}, 2*І_{Δп} и 5*І_{Δп} 0..8% для 0,5*І_{Δп}-8..0%

Действующее значение вынужденного тока утечки при измерении времени срабатывания выключателя УЗО [мА]

	Настройки кратности тока							
$I_{\Delta n}$		0	,5				1	
	\sim	~~	<u>~~</u>		\sim	~~	<u>~~</u>	
10	5	3,5	3,5	5	10	20	20	20
30	15	10,5	10,5	15	30	42	42	60
100	50	35	35	50	100	140	140	200
300	150	105	105	150	300	420	420	600
500	250	175	175	—	500	700	700	1000*
1000	500				1000			

	Настройки кратности тока							
$I_{\Delta n}$			2				5	
	<	2	<u>~~</u>		\sim	~~	<u>~~</u>	
10	20	40	40	40	50	100	100	100
30	60	84	84	120	150	210	210	300
100	200	280	280	400	500	700	700	1000*
300	600	840	840	—	_	—	—	
500	1000	_	—	—		—	—	—
1000								
				1		1	1	

* – не касается U_n = 110 В, 115 В и 127 В, а также сети в системе IT.

Измерение сопротивления заземления R_E (для сети TT)

Выбранный номинальный ток УЗО	Диапазон измерения	Разрешение	Ток измерения	Основная погрешность
10 мА	0,015,00 кОм		4 mA	0+10% и.в. ± 8 е.м.р.
30 мА	0,011,66 кОм	0,01 KOM	12 мА	0+10% и.в. ± 5 е.м.р.
100 мА	1500 Ом		40 mA	
300 мА	1166 Ом	1 0 4	120 мА	$0 \pm 5\%$ H R + 5 0 M R
500 мА	1100 Ом	I OM	200 мА	0тэ⁄а и.в. ± э е.м.р.
1000 мА	150 Om		400 mA	

Измерение напряжения прикосновения U_в для номинального дифференциального тока

Диапазон измерения по ГОСТ IEC 61557-6-2013: 10,0...99,9 В

Диапазон измерения	Разрешение	Ток измерения	Основная погрешность	
09,9 B	0 1 P	0.4 × L	10% и.в. + 5 е.м.р.	
10,099,9 B	0,1 B	0,4 X I∆n	± 15% и.в.	

Измерение тока срабатывания УЗО I_A для синусоидального дифференциального тока

Выбранный номинальный ток УЗО	Диапазон pomiarowy	Разрешение	Ток измерения	Основная погрешность
10 мА	3,010,0 мА	0.1 м		
30 мА	9,030,0 мА	0,1 MA		
100 мА	33100 мА			
300 мА	90300 мА	1 MA	0,3 X I∆n1,0 X I∆n	± 3% I ∆n
500 мА	150500 мА			
1000 мА	3301000 мА			

Диапазон измерения по ГОСТ IEC 61557-6-2013: (0,3...1,0)I_{Δn}

 Запуск измерения возможен от положительной или отрицательной полуволны тока утечки;

• Время протекания измерительного тока..... макс. 8,8 с.

Измерение тока срабатывания УЗО І_А для пульсирующего однополярного дифференциального тока и пульсирующего однополярного с постоянной составляющей 6 мА

Диапазон измерения по ГОСТ IEC 61557-6-2013: (0,35...1,4)І_{∆п} для І_{∆п}≥30 мА и (0,35...2)І_{∆п} для І_{∆п}=10 мА

Выбранный номинальный ток УЗО	Диапазон измерения	Разрешение	Ток измерения	Основная погрешность
10 mA	3,520,0 мА	0.1 мA	0,35 x I∆n2,0 x I∆n	
30 mA	10,542,0 мА	0,1 MA		
100 мА	35140 мА			$\pm 10\%$ l $_{\Delta n}$
300 мА	105420 мА	1 MA	$0,33 \times I_{\Delta n}$ $1,4 \times I_{\Delta n}$	
500 мА	175700 мА			

 Запуск измерения возможен от положительной или отрицательной полуволны тока утечки.

• Время протекания измерительного тока..... макс. 8,8 с.

Измерение тока срабатывания УЗО IA для постоянного дифференциального тока

Диапазон измерения по ГОСТ IEC 61557-6-2013: (0,2...2) I_{Дл}

Выбранный номинальный ток УЗО	Диапазон измерения	Разрешение	Ток измерения	Основная погрешность
10 mA	2,020,0 мА	0,1 мА		
30 mA	660 мА			
100 mA	20100 мА	1	0,2 x $I_{\Delta n}$ 2,0 x $I_{\Delta n}$	$\pm 10\%$ I $_{\Delta n}$
300 мА	60600 мА	IMA		
500 мА	1001000 мА			

 Запуск измерения возможен от положительной или отрицательной полуволны тока утечки.

• Время протекания измерительного тока..... макс. 5,2 с.

9.1.6 Измерение сопротивления заземляющих устройств R_E

Диапазон измерения по ГОСТ IEC 61557-5: 0,5 Ом...1,99 кОм для измерительного напряжения 50 В и 0,56 Ом...1,99 кОм для измерительного напряжения 25 В.

Диапазон	Разрешение	Основная погрешность
00,35 Ом	0,01 Ом	±(2% и.в. + 10 е.м.р.)
0,359,99 Ом	0,01 Ом	±(2% и.в. + 4 е.м.р.)
10,099,9 Ом	0,1 Ом	
100999 Ом	1 Om	±(2% и.в. + 3 е.м.р.)
1,001,99 кОм	0,01 кОм	

• Измерительное напряжение: 25 или 50 В (rms);

- Ток измерения: 20 мА (rms) синусоидальный 125 Гц (для fn=50 Гц) и 150 Гц (для fn=60 Гц);
- Блокировка измерения при напряжении помех U_N>24 В;
- Максимально измеряемое напряжение помех U_{Nmax}=100 В;
- Максимальное сопротивление вспомогательных электродов 50 кОм.

Измерение сопротивления вспомогательных электродов R_H, R_s

Диапазону отображения	Разрешение	Основная погрешность
0999 Ом	1 Ом	
1,009,99 кОм	0,01 кОм	±(5% (R _s + R _e + R _н) + 3 е.м.р.)
10,050,0 кОм	0,1 кОм	

Измерение напряжения помех

Внутреннее сопротивление: примерно 8 МОм.

Диапазон	Разрешение	Основная погрешность
0100 B	1 B	±(2% и.в. + 3 е.м.р.)

Измерение сопротивления заземляющих устройств с использованием клещей

Диапазон	Разрешение	Основная погрешность *
00,35 Ом	0,01 Om	±(8% и.в. + 10 е.м.р.)
0,359,99 Ом	0,01 Om	
10,099,9 Ом	0,1 Ом	$+(8\% \mu_{B} + 40 \mu_{D})$
100999 Ом	1 Om	±(8% й.в. + 4 €.м.р.)
1,001,99 кОм	0,01 кОм	

* – при максимальном токе помех 1 А.

- Измерение с дополнительными токовыми клещами С-3;
- Диапазон измерения тока помех до 9,99 А.

Измерение сопротивления заземляющих устройств с использованием метода 2-х клещей.

Диапазон	Разрешение	Основная погрешность*	
00,35 Ом	0,01 Om	±(10% и.в. + 10 е.м.р.)	
0,359,99 Ом	0,01 Om	±(10% и.в. + 4 е.м.р.)	
10,019,9 Ом	0,1 Ом		
20,099,9 Ом	0,1 Ом	±(20% и.в. + 4 е.м.р.)	

- * при максимальном токе помех 1 А.
 - Измерение с передающими N-1 и приемными C-3 клещами;
 - Диапазон измерения тока помех до 9,99 А.

Измерение удельного сопротивления грунта (р)

Диапазон	Разрешение	Основная погрешность
099,9 Омм	0,1 Омм	
100999 Омм	1 Омм	зависит от основнои погрешности измерения R _E
1,009,99 кОмм	0,01 кОмм	
10,099,9 кОмм	0,1 кОмм	

• Измерение методом Веннера (Wennera);

- Возможность установки расстояния в метрах или футах;
- Выбор расстояния 1...30 м (1...90 футов).

9.1.7 Низковольтное измерение сопротивления

Измерение сопротивления контактных соединений, защитных проводников и проводников системы уравнивания потенциалов током ±200 мА

Диапазон измерения по ГОСТ IEC 61557-4-2013: 0,12...400 Ом.

Диапазон	Разрешение	Основная погрешность
019,99 Ом	0,01 Om	
20,0199,9 Ом	0,1 Om	±(2% и.в. + 3 е.м.р.)
200400 Ом	1 Ом	

• Напряжение на разомкнутых зажимах: 4...9 В;

- Выходной ток при R<2 Ом: мин. 200 мА (I_{sc}: 200...250 мА);
- Компенсация сопротивления измерительных проводов;
- Измерение для обеих полярностей тока.

Измерение сопротивления малым током

Диапазон	Разрешение	Основная погрешность	
0199,9 Ом	0,1 Ом	±(3% и.в. + 3 е.м.р.)	
2001999 Ом	1 Ом		

- Напряжение на разомкнутых зажимах: 4...9 В;
- Выходной ток < 8 мА;
- Звуковой сигнал для измеряемого сопротивления < 30 Ом ± 50%;
- Компенсация сопротивления измерительных проводов.

9.1.8 Измерение сопротивления изоляции

Диапазон измерения по ГОСТ IEC 61557-2-2013 для U_N = 50 В: 50 кОм...250 МОм.

Диапазон отображения для U _N = 50 В	Разрешение	Основная погрешность
01999 кОм	1 кОм	
2,0019,99 МОм	0,01 MOm	±(3% и.в. + 8 е.м.р.),
20,0199,9 МОм	0,1 MOm	[±(5% и.в. + 8 е.м.р.)] *
200250 МОм	1 MOm	

* – для кабелей WS-03 и WS-04.

Диапазон измерения по IEC 61557-2-2013 для U_N = 100 В: 100 кОм...500 МОм.

Диапазон отображения для U _N = 100 В	Разрешение	Основная погрешность
01999 кОм	1 кОм	
2,0019,99 МОм	0,01 MOm	±(3% и.в. + 8 е.м.р.)
20,0199,9 МОм	0,1 МОм	[±(5% и.в. + 8 е.м.р.)] *
200500 МОм	1 МОм	

* – для кабелей WS-03 и WS-04.

Диапазон измерения по ГОСТ IEC 61557-2-2013 для U_N = 250 В: 250 кОм...999 МОм.

Диапазон отображения для U _N = 250 В	Разрешение	Основная погрешность
01999 кОм	1 кОм	
2,0019,99 МОм	0,01 MOm	±(3% и.в. + 8 е.м.р.)
20,0199,9 МОм	0,1 МОм	[±(5% и.в. + 8 е.м.р.)] *
200999 МОм	1 МОм	

* — для кабелей WS-03 и WS-04.

Диапазон измерения по ГОСТ IEC 61557-2 для U_N = 500 В: 500 кОм...2,00 ГОм.

Диапазон отображения для U _N = 500 В	Разрешение	Основная погрешность
01999 кОм	1 кОм	
2,0019,99 МОм	0,01 MOm	±(3% и.в. + 8 е.м.р.)
20,0199,9 МОм	0,1 МОм	[±(5% и.в. + 8 е.м.р.)] *
200999 МОм	1 МОм	
		Не нормируется
1,002,0010M	0,0110M	[±(6% и.в. + 6 е.м.р.)] *

* – для кабелей WS-03 и WS-04.

Диапазон измерения по ГОСТ IEC 61557-2 для U_N = 1000 В: 1000 кОм...4,99 ГОм.

Диапазон отображения для U _N = 1000 В	Разрешение	Основная погрешность	
01999 кОм	1 кОм		
2,0019,99 МОм	0,01 MOm	±(3% и.в. + 8 е.м.р.)	
20,0199,9 МОм	0,1 МОм		
200999 МОм	1 МОм		
1,009,99 MOm	0,01 ГОм	Не нормируется	

• Измерительные напряжения: 50 В, 100 В, 250 В, 500 В и 1000 В;

• Точность задания напряжения (Robc [Oм] ≥ 1000*U_N [B]): -0% +10% от установленного значения;

• Обнаружение опасного напряжения перед измерением;

• Разряд измеряемого объекта;

 Измерение сопротивления изоляции с использованием вилки UNI-Schuko (WS-03, WS-04) между всеми тремя контактами (для U_N=1000 В не доступно);

- Измерение сопротивления изоляции многожильных кабелей (макс. 5) с помощью дополнительного внешнего адаптера AutoISO-1000C;
- Измерение напряжения на гнёздах +R_{ISO}, -R_{ISO} в диапазоне: 0...440 В;
- Ток измерения < 2 мА.

9.1.9 Измерение освещённости

Диапазоны измерения зонда LP-1.

Диапазон [лк]	Разрешение [лк]	Спектральная погрешность	Основная погрешность
0399,9	0,1		
4003999	1	f1<6%	±(5% и.в. + 5 е.м.р.)
4,00 к19,99 к	0,01 к		

• Класс зонда В.

Диапазоны измерения зонда LP-10B.

Диапазон	Разрешение	Спектральная	
[лк]	[лк]	погрешность	Основная погрешноств
039,99	0,01		
40,0399,9	0,1		
4003999	1	f1<6%	±(5% и.в. + 5 е.м.р.)
4,00 к39,99 к	0,01 к		
40,0 к399,9 к	0,1 к		

• Класс зонда В.

Диапазоны измерения зонда LP-10А.

Диапазон	Разрешение	Спектральная	Основная погрешность
[лк]	[лк]	погрешность	
03,999	0,001		
4,0039,99	0,01		
40,0399,9	0,1	f1~70/	$+(2\% \mu_{\rm D} + 50 \mu_{\rm D})$
4003999	1	11~276	_(2∞и.в. + 5 е.м.р.)
4,00 к39,99 к	0,01 к		
40,0 к399,9 к	0,1 к		

• Класс зонда А.

9.1.10 Последовательность фаз

- Индикация последовательности фаз: прямая, обратная;
- Диапазон напряжения сети U_{L-L}: 95...500 В (45...65 Гц);
- Отображение значения линейных напряжений.

9.1.11 Вращение двигателя

- Диапазон переменного напряжения SEM электродвигателей: 1...500 В;
- Измерительный ток (в каждой фазе): <3,5 мА.

9.2 ДАННЫЕ РЕГИСТРАТОРА

9.2.1 Входы

Входы напряжения

Количество входов	4 (L1, L2, L3, N - 3 пути измерения) гальванически не изолированные друг от друга	
Максимальное входное напряжение	L1, L2, L3, N: 500 В _{RMS} относительно земли.	
Пиковое входное напряжение (без ограничения)	1150 B (L-N)	
Аналоговая полоса частот (-3 дБ)	12 кГц	
Трансформаторы	по решению пользователя	
Сопротивление измерительных входов	14 МОм (L-L, L-N)	
Коэффициент ослабления синфазного сигнала (англ. CMRR)	>70 дБ (50 Гц)	

Входы тока

Количество входов	3 (L1, L2, L3) гальванически не изолированные друг от друга
Максимальное пиковое входное напряжение	5 В относительно земли
Номинальное входное напряжение (жесткие клещи)	1 B _{RMS}
Пиковое входное напряжение (жесткие клещи, без ограничения)	3,6 В
Аналоговая полоса частот (-3 дБ)	12 кГц
Входное сопротивление	Цепь жестких клещей: 100 кОм Цепь гибких клещей: 12,4 кОм
Диапазон измерения (без трансформаторов)	Гибкие клещи F-1(A)/F-2(A)/F-3(A): 13000 А (пиковый ток 10000 А, 50 Гц) Жёсткие клещи C-4(A), C-5(A): 11000 А (пиковый ток 3600 А). Жёсткие клещи C-6(A): 0,0110 А (пиковый ток 36 А). Жёсткие клещи C-7(A): 0100 А (пиковый ток 360 А).
Трансформаторы	по решению пользователя
Коэффициент ослабления синфазного сигнала (англ. CMRR)	60 дБ (50 Гц)

9.2.2 Дискретизация и часы реального времени RTC

Аналого-цифровой преобразователь	16-бит
Скорость дискретизации	5,12 кГц для 50/60 Гц Одновременнная дискретизация по всем каналам
Количество отсчётов на период	102,4 для 50 Гц; 85,33 для 60 Гц

Синхронизация ФАПЧ (англ. PLL)	4070 Гц
Опорный канал для схемы ФАПЧ	L1-N, L1-L2 (в зависимости от типа сети)
Часы реального времени (англ.RTC)	±30 ppm (примерно ±2,6 секунды в день)

9.2.3 Измерение напряжения

Напражение	Лиадагон и условия	Разрешение	Основная
папряжение	диапазон и условия	Газрешение	погрешность
U _{RMS}	$20\%~U_{nom} \leq U_{RMS} \leq 120\%~U_{nom}$	0.1% []	+0.5% 11
(переменное+постоянное)	для U _{nom} ≥ 100 В	0,170 O _{nom}	⊥0,370 O _{nom}
Коэффициент	110		
пиковых значений	(12,2 для напряжения 500 В)	0,01	±5%
	для U _{RMS} ≥ 10% U _{nom}		

9.2.4 Измерение тока (True RMS)

Ток	Диапазон и условия	Разрешение	Основная погрешность
	Гибкие клещи F-1/F-2/F-3		
	03000 А (10 кА _{р-р} @ 50Гц)	0,01% I _{nom}	±20% и.в.
		Жёсткие	е клещи C-4
			0,110 А: ± (3% и.в. + 0,1 А)
	0 1000 4		1050 А: ±3% и.в.
	(3600 A)	0,01% I _{nom}	50200 А: ±1,5% и.в.
	(3000 Ap-p)		2001000 А: ±0,75% и.в.
			10001200 А: ±0,75% и.в.
I _{RMS}	Жёсткие клещи С-5		
(переменный			0,5100 А: ≤ (1,5% и.в. + 1 А)
+постоянный)	01000 A	0.01%	100800 А: ≤2,5% и.в.
	(3600 A _{p-p})	0,0170 Inom	8001000 А переменного тока: ≤ 4% и.в.
			10001400 А постоянного тока: ≤ 4% и.в.
	Жёсткие клещи С-6А		
	010 A		0,010,1 А: ±(3% и.в. + 0,001 А)
	(36 A _{p-p})	0,01% I _{nom}	0,11 А: ±2,5% и.в.
			112 А: ±1% и.в.
	Жёсткие клещи С-7А		
	0100 A	0.01%	$0.01 100 A^2 + (0.5\% \ \mu B + 0.02 \ A)$
	(360 A _{p-p})	0,0170 Inom	0,01100 A. ± (0,5% И.В. + 0,02 A)
Коэффициент	110 (макс. 3,6 для		
пиковых	I _{nom})	0,01	±5%
значений	для I _{RMS} ≥ 1% I _{nom}		

9.2.5 Измерение частоты

Частота	Диапазон и условия	Разрешение	Основная погрешность
f	4070 Гц 15% Unom < URMS < 120% Unom	0,01 Гц	±0,05 Гц

9.2.6 Измерение гармоник

Гармоники	Диапазон и условия	Разрешение	Основная погрешность	
	DC, 140, группирование: подгруппы гармоник			
гядтармоники (п)	по ГОСТ 30804.4.7-2013 (IEC 61000-4-7:2009)			
Амплитуда U _{RMS}	0120% U _{nom}	0,01% U _{nom}	±0,15% U _{nom} если и.в. <3% U _{nom}	
			±5% и.в. если и.в. ≥ 1% U _{nom}	
	В зависимости от			
Амплитуда I _{RMS}	используемых	0.01%1	±0,5% I _{nom} если и.в.<10% U _{nom}	
	клещей (смотри	0,0170 Inom	±5% и.в. если и.в.≥ 1% U _{nom}	
	данные I _{RMS})			
THD-F напряжения	0100,0%	0.1%	±5%	
(n = 240)	для U _{RMS} ≥ 1% U _{nom}	0,170		
ТНD-F тока	0100,0%	0.1%	+5%	
(n = 240)	для I _{RMS} ≥ 1% I _{nom}	0,170	±3%	

9.2.7 Асимметрия

Асиммотрия		Разрошение	Основная
Асимметрия	диапазон и условия	газрешение	погрешность
Коэффициент несимметрии по	0.20% 555		
обратной и нулевой	020% для	0,1%	±0,15%
последовательности.	$\delta U \approx 0_{\text{nom}} \ge 0_{\text{RMS}} \le 150\% 0_{\text{nom}}$		

9.2.8 Измерение мощности и энергии

Мощность и энергия	Условия (для мощности и энергии 80% U _{nom} ≤ U _{nom} < 120% U _{nom})	Разрешение	Основная погрешность ⁽¹⁾
Активная мощность	2% har Shar Shar	зависит от	$+0.01\sqrt{\delta^2+\delta^2+\delta^2} * P(E_{22})$
Активная энергия		U _{nom} и I _{nom}	<u>1</u> 0,0100 g + 0 g + 1 (2p)
Реактивная мощность		зависит от	$10.01 \sqrt{5^2 + 5^2 + 5^2} \cdot O(T_{\rm c})$
Реактивная энергия	270 Inom S Inom Nom	U _{nom} и I _{nom}	$\underline{+}0,01\sqrt{0}_{ij}+0_{j}+0_{p}*Q(Eq)$
Полная мощность		зависит от	10.01 5^{2} 15^{2} $. C(T_{-})$
Полная энергия	∠ 70 Inom ≤ Inom < Inom	U _{nom} и I _{nom}	±0,01 0 1 +01 *3(ES)
Коэффициент мощности (PF)	01 50% U _{nom} ≤ U _{nom} < 150% U _{nom} 1% I _{nom} ≤ I _{nom} < I _{nom}	0,01	±0,03
Коэффициент	01		
фазового сдвига	$50\%~U_{nom} \leq U_{nom} < 150\%~U_{nom}$	0,01	±0,03
(cosφ/DPF)	$1\% I_{nom} \le I_{nom} < I_{nom}$		

⁽¹⁾ Смотри гл. 8.2.9 Оценка погрешности измерения мощности и энергии.

9.2.9 Оценка погрешности измерения мощности и энергии

Итоговая погрешность измерения мощности, а также активной и реактивной энергии (основной составляющей) в обобщении базируется на следующей зависимости (для энергии опустим дополнительную погрешность измерения времени, как много меньшую, чем остальные погрешности):

$$\delta_{P,Q} \cong \sqrt{\delta_{Uh}^2 + \delta_{Ih}^2 + \delta_{ph}^2}$$

где:

*б*_{*P,Q} –* погрешность измерения активной или реактивной мощности.</sub>

- *δ*_{Uh} суммарная погрешность измерения амплитуды гармоник напряжения (регистратор, трансформаторы, клещи).
- *δ*_{*lh*} суммарная погрешность измерения амплитуды гармоник тока (регистратор, трансформаторы, клещи).
- *δ*_{ph} дополнительная погрешность, следующая из ошибки измерения фазы между гармониками напряжения и тока.

Погрешность δ_{ph} можно определить, если известен угол фазового сдвига для интересующего нас диапазона частоты. В таблице 8.1 представлена ошибка разности фаз между гармоникками напряжения и тока для регистратора MPI-540 (без клещей и трансформаторов).

Таблица 9.1. Ошибка фазы регистратора MPI-540 в зависимости от частоты.

Диапазон частоты	0200 Гц	200500 Гц	500 Гц1 кГц	12 кГц	22,4 кГц
Ошибка фазы	≤1°	≤2,5°	≤5°	≤10°	≤15°

Ошибку фазы, вносимую при использовании трансформаторов и клещей, обычно можно найти в их технической документации. В таком случае, необходимо оценить результирующую ошибку фазы между напряжением и током для интересующей нас частоты, вносимую всеми элементами измерительной цепи: трансформаторы напряжения и тока, клещи и регистратор.

Погрешность измерения из-за ошибки фазы для активной мощности отдельных гармоник можно определить на основании зависимости:

$$\delta_{ph} = 100 \left(1 - \frac{\cos(\phi + \Delta \phi)}{\cos \phi}\right) \, [\%], \, \cos \phi \neq 0$$

В свою очередь, погрешность измерения реактивной мощности гармоник можно определить из зависимости:

$$\delta_{ph} = 100 \left(1 - \frac{\sin(\phi - \Delta \phi)}{\sin \phi} \right) \, [\%], \, \sin \phi \neq 0$$

В обеих этих формулах φ означает фактический угол сдвига между гармониками тока и напряжения, а Δφ - суммарную ошибку фазы для данной частоты.

9.3 ДОПОЛНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ

Питание		
Питание измерителя	Пакет аккумуляторов SONEL Li-Ion 11,1 В, 3,4 Ач.	
	постоянное 12 В / 2,5 А	
	100240 В, 5060 Гц (сеть)	
Диапазон температур, позволяющий	1040 °C	
начать зарядку аккумулятора		
Температуры, при которых	< 5 °С и ≥ 50°С	
прекращается зарядка аккумулятора		
Категория электробезопасности	CAT IV/300 B, CAT III/500 B	

Условия окружающей среды и другие технические данные			
Диапазон рабочих температур	050 °C		
Диапазон температур при хранении	-2060 °C		
Влажность	2080%		
Степень защиты, согласно			
ГОСТ 14254-2015 (IEC 60529:2013)			
Высота над уровнем моря	< 2000 M		
Размеры	228 х 223 х 75 мм		
Масса	около 2,2 кг		
Лисплей	цветной ЖКИ TFT, сенсорный, 800 x 480 px,		
	диагональ 7"		
Количество измерений Zs или параметров	3000 (6 изм./мин)		
RCD для аккумуляторных батарей, не менее			
Количество измерений R _{iso} или R для	1000		
аккумуляторных батарей, не менее			
Время регистрации для аккумуляторных	16		
батарей, ч			
Время до автоматического выключения	2 мин, 5 мин или функция отключена.		
Auto-OFF			
Память	Без ограничений		
Интерфейс	USB		
Соответствие	ГОСТ Р МЭК 61557-1-2005		
	Двойная изоляция, согласно ГОСТ IEC 61010-1-2014		
	FOCT IEC 61557-1-2005		
	ГОСТ Р МЭК 61326-1-2014		
	ГОСТ Р 51522.2.2-2011 (МЭК 61326-2-2:2005)		

ТММ-540 - это приборы класса А. В бытовой среде это изделие может вызвать радиопомехи, что потребует от пользователя принятия соответствующих мер по исправлению положения.
9.4 ДОПОЛНИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Данные о дополнительных погрешностях будут полезны главным образом в случае использования измерителя в нестандартных условиях и для лабораторных измерений при поверке.

9.4.1 Дополнительные погрешности по ГОСТ IEC 61557-2-2013 (R_{ISO})

Влияющая величина	Обозначение	Дополнительная погрешность
Положение	E1	0%
Напряжение питания	E ₂	0%
Температура 0°С35°С	E ₃	2%

9.4.2 Дополнительные погрешности по ГОСТ IEC 61557-3-2013 (Z)

Влияющая величина	Обозначение	Дополнительная погрешность	
Положение	E ₁	0%	
Напряжение питания	E ₂	0%	
		провод 1,2 м – 0 Ом	
		провод 5 м — 0,011 Ом	
Температура 035°С	E ₃	провод 10 м – 0,019 Ом	
		провод 20 м – 0,035 Ом	
		кабель WS-03, WS-04 — 0,015 Ом	
Фазовый угол 0°30°	E _{6.2}	0,6%	
Частота 99101% f _n	E ₇	0%	
Напряжение сети 85110% U _n	кение сети 85110% U _n E ₈ 0%		
Гармоники	E9	0%	
Постоянная составляющая	E ₁₀	0%	

9.4.3 Дополнительные погрешности по ГОСТ IEC 61557-4-2013 (R ±200 mA)

Влияющая величина	Обозначение	Дополнительная погрешность
Положение	E ₁	0%
Напряжение питания	E ₂	0,5%
Температура 035°С	E ₃	1,5%

9.4.4 Дополнительные погрешности при измерении сопротивления заземления (R_E)

Дополнительные погрешности по ГОСТ IEC 61557-5-2013

Влияющая величина	Обозначение	Дополнительная погрешность	
Положение	E ₁ 0%		
Напряжение питания	E ₂	0%	
	E.	0% для 50 В	
	∟3	±2 е.м.р. для 25 В	
Напряжение помех	E ₄	±(6,5% + 5 е.м.р.)	
Сопротивление электродов	E₅	2,5%	
Частота 99101% f _n	E ₇	0%	
Напряжение сети 85110% Un	E ₈	0%	

Дополнительная погрешность от напряжения помех для функций 3р, 4р, 3р+клещи

(для 25 В и 50 В)

R _E	Дополнительная погрешность
<10 Ом	$\pm (((-32 \cdot 10^{-5} \cdot R_E + 33 \cdot 10^{-4}) \cdot U_Z^2 + (-12 \cdot 10^{-3} \cdot R_E + 13 \cdot 10^{-3}) \cdot U_Z) \cdot 100\% + 0,026 \cdot \sqrt{U_Z}\Omega)$
≥10 Ом	$\pm (((-46 \cdot 10^{-9} \cdot R_E + 1 \cdot 10^{-4}) \cdot U_Z^2 + (14 \cdot 10^{-8} \cdot R_E + 19 \cdot 10^{-5}) \cdot U_Z) \cdot 100\% + 0.26\sqrt{U_Z}\Omega)$

Дополнительная погрешность от сопротивления электродов

$$\delta_{dod} = \pm \left(\frac{R_S}{R_S + 10^6} \cdot 300 + \frac{R_H^2}{R_E \cdot R_H + 200} \cdot 3 \cdot 10^{-3} + \left(1 + \frac{1}{R_E} \right) \cdot R_H \cdot 5 \cdot 10^{-4} \right) [\%]$$

Формула справедлива для R_s > 200 Ом и/или R_H ≥ 200 Ом.

Дополнительная погрешность от тока помехи в функции 3р + клещи

(для 25 В и 50 В)

R _E	Погрешность [Ом]
≤50 Ом	$\pm (4 \cdot 10^{-2} \cdot R_E \cdot I_{zakl}^2)$
>50 Ом	$\pm (25 \cdot 10^{-5} \cdot R_E^2 \cdot I_{zakl}^2)$

Дополнительная погрешность от тока помехи в функции измерения двумя клещами

R _E	Погрешность [Ом]
<5 Ом	$\pm (5 \cdot 10^{-2} \cdot R_E^2 \cdot I_{zakl})$
≥5 Ом	$\pm (2,5 \cdot 10^{-2} \cdot R_E^2 \cdot I_{zakl}^2)$

Дополнительная погрешность от отношения измеряемого клещами сопротивления части многоэлементного заземления к результирующему сопротивлению в функции 3р + клещи

R _c	Погрешность [Ом]
≤99,9 Ом	$\pm (5 \cdot 10^{-3} \cdot \frac{R_c}{R_w^2})$
>99,9 Om	$\pm (9 \cdot 10^{-2} \cdot \frac{R_c}{R_w^2})$

R_C[Oм] — значение сопротивления части заземления, измеренной клещами и отображаемого прибором, а R_w[Oм] — значение результирующего сопротивления многоэлементного заземления.

9.4.5 Дополнительные погрешности по ГОСТ ІЕС 61557-6 (УЗО)

I _A , t _A , U _B		
Влияющая величина	Обозначение	Дополнительная погрешность
Положение	E1	0%
Напряжение питания	E ₂	0%
Температура 035°С	E ₃	0%
Сопротивление электродов	E ₅	0%
Напряжение сети 85110% U _n	E ₈	0%

10 КОМПЛЕКТАЦИЯ

10.1 СТАНДАРТНАЯ КОМПЛЕКТАЦИЯ

Наименование	Индекс	Индекс
Измеритель параметров электробезопасности электроустановок		WMRUTMM540
TMM-540	т Ш1.	WWING 1101019-10
Руководство по эксплуатации/Паспорт	1/1 шт.	
Адаптер автомобильный (12В)	1 шт.	WAPRZLAD12SAM
Адаптер WS-03 с сетевой вилкой UNI-SCHUKO и кнопкой «СТАРТ»	1 шт.	WAADAWS03
Аккумуляторная батарея Li-Ion SONEL-15 11,1V	1 шт.	WAAKU15
Зажим «Крокодил» изолированный голубой КО2	1 шт.	WAKROBU20K02
Зажим «Крокодил» изолированный жёлтый КО2	1 шт.	WAKROYE20K02
Зажим «Крокодил» изолированный красный КО2	1 шт.	WAKRORE20K02
Зажим «Крокодил» изолированный чёрный КО1	1 шт.	WAKROBL20K01
Зарядное устройство для аккумуляторов Z7	1 шт.	WAZASZ7CZ
Зонд измерительный для забивки в грунт 30 см	2 шт.	WASONG30
Зонд острый с разъёмом «банан» голубой	1 шт.	WASONBUOGB1
Зонд острый с разъёмом «банан» жёлтый	1 шт.	WASONYEOGB1
Зонд острый с разъёмом «банан» красный	1 шт.	WASONREOGB1
Кабель последовательного интерфейса USB	1 шт.	WAPRZUSB
Кабель сетевой	1 шт.	WAPRZLAD230CZ
Карта памяти microSD 4ГБ	1 шт.	#
Клещи гибкие F-3А	3 шт.	WACEGF3AOKR
Комплект ремней «Свободные руки»	1 шт.	WAPOZSZEKPL
Провод измерительный 15 м на катушке с разъёмами «банан»	1 шт.	WAPRZ015BUBBSZ
голубой		
Провод измерительный 30 м на катушке с разъёмами «банан»	1 шт.	WAPRZ030REBBSZ
красный		
Провод измерительный 1,2 м с разъёмами «банан» голубой	1 шт.	WAPRZ1X2BUBB
Провод измерительный 1,2 м с разъёмами «банан» жёлтый	1 шт.	WAPRZ1X2YEBB
Провод измерительный 1,2 м с разъёмами «банан» красный	1 шт.	WAPRZ1X2REBB
Провод измерительный 1,2 м с разъёмами «банан» чёрный с	1 шт	WAPR71X2BI BBN
маркировкой N		
Соединитель электрический – адаптер с резьбой М4/М64	1 компл.	WAADAM4M64
Футляр L2	1 шт.	WAFUTL2

10.2 ДОПОЛНИТЕЛЬНАЯ КОМПЛЕКТАЦИЯ

Наименование	Индекс
Адаптер для тестирования зарядных станций электромобилей EVSE-01	WAADAEVSE01
Адаптер питания АZ-2	WAADAAZ2
Адаптер WS-04 с сетевой вилкой UNI-SCHUKO	WAADAWS04
Адаптер AutoISO-1000C	WAADAAISO10C
Адаптер АGT-16С	WAADAAGT16C
Адаптер АGT-16Р	WAADAAGT16P

Адаптер АGT-16Т	WAADAAGT16T
Адаптер АGT-32С	WAADAAGT32C
Адаптер АGT-32Р	WAADAAGT32P
Адаптер АGT-32T	WAADAAGT32T
Адаптер АGT-63Р	WAADAAGT63P
Адаптер для тестирования устройств защитного отключения (УЗО) TWR-1J	WAADATWR1J
Датчик люксметра LP1 с адаптером WS-06	WAADALP1KPL
Датчик люксметра LP10A с адаптером WS-06	WAADALP10AKPL
Датчик люксметра LP10B с адаптером WS-06	WAADALP10BKPL
Зажим специальный типа «струбцина» с разъёмом «банан»	WAZACIMA1
Зонд для измерений сопротивления полов и стен PRS-1	WASONPRS1
Зонд измерительный для забивки в грунт 80 см	WASONG80
Зонд измерительный для забивки в грунт 80 см разборный	WASONG80V2
Зонд люксметра LP1	WAADALP1
Зонд люксметра LP10А	WAADALP10A
Зонд люксметра LP10B	WAADALP10B
Зонд острый с разъёмом «банан» складной SP-2M	WASONSP2M
Клещи гибкие F-1	WACEGF10KR
Клещи гибкие F-2A	WACEGF2AOKR
Клещи измерительные С-3	WACEGC30KR
Клещи измерительные С-4	WACEGC4OKR
Клещи измерительные С-5	WACEGC50KR
Клещи измерительные С-6А	WACEGC6AOKR
Клещи измерительные С-7	WACEGC70KR
Клещи передающие N-1	WACEGN1BB
Переходник WS-06 PS/2	WAADAWS06
Провод измерительный 25 м на катушке с разъёмами «банан» голубой	WAPRZ025BUBBSZ
Провод измерительный 50 м на катушке с разъёмами «банан» жёлтый	WAPRZ050YEBBSZ
Провод измерительный 5 м с разъёмами «банан» красный	WAPRZ005REBB
Провод измерительный 10 м с разъёмами «банан» красный	WAPRZ010REBB
Провод измерительный 20 м с разъёмами «банан» красный	WAPRZ020REBB
Симулятор кабеля СК-1	WAADACK1
Соединитель электрический - адаптер АС-16	WAADAAC16
Футляр для двух зондов 80 см	WAFUTL3

10.2.1 Клещи С-3

Клещи С-3 предназначены для измерения силы переменного тока в электроустановках низкой и средней мощности. Как дополнительный аксессуар к приборам компании SONEL S.A., они совместимы с измерителями сопротивления заземления серии MRU/TE и многофункциональными измерителями серии MPI/TMM.

Выходной сигнал проходит по кабелю 2 м, заканчивающимся соответствующей вилкой, подходящей к гнезду разъёма в измерителе.

Нельзя измерять токи выше 1200 А. Следует ограничить время измерения тока до 1000 А, согласно следующим данным:

	,				
	Диапазон тока	$I \le 1000 \text{ A}$		1000 A < I ≤	≤ 1200 A
	Режим работы	непрерывный ¹	15	минут	измерения,
	'		следующие 30 минут переры		инут перерыв.
L)	.) Для частоты f ≤ 1 кГц. Ограничения максимального значения тока при непрерывной работе для				

⁻ для частоты т ≤ 1 кгц. Ограничения максимального значения тока при непрерывнои работе для частоты выше 1 кГц в соответствии с зависимостью І_{макс} = 1000 A/f [кГц].

Нормальные условия для поверки		
Температура	2026 °C	
Относительная влажность	2075 %	
Позиция провода	провод в центре, относительно зажимов клещей	
Частота синусоидального тока	4865 Гц	
Коэффициент гармонических искажений	< 1%	
Постоянная составляющая тока	Отсутствует	
Постоянное магнитное поле	≤ 40 А/м (магнитное поле Земли)	
Переменное внешнее магнитное поле	Отсутствует	
Провода в непосредственной близости	Отсутствие протекающего по ним тока	

Диапазон тока	Основная погрешность ⁽¹⁾	Ошибка фазы
1100 мА	3% + 5 мкА	не указана
0,11 A	2% + 3 мкА	не указана
110 A	1%	2°
10100 A	0,5%	1°
1001200 A	0,3%	0,7°

(1) в % от измеряемой величины.

1

Технические параметры		
Выходной сигнал для максимального тока	1 А переменного тока	
Коэффициент	1/1000 A	
Частотный диапазон	30 Гц5 кГц	
	двойная, в соответствии с	
	ГОСТ IEC 61010-2-032-2014	
Измерительная категория по	III 600 B	
ГОСТ IEC 61010-2-032-2014		
Степень защиты, согласно	IP40, с открытыми губками IP30	
FOCT 14254-2015 (IEC 60529:2013)		
Размеры	216 х 111 х 45 мм	
Масса	около 550 г	
Раскрытие зажимов	53 мм	
Охват открытых зажимов	139 мм	
Максимальный диаметр измеряемого провода	Ø 52 мм	
Длина кабеля клещей	2 м	
Диапазон рабочих температур	-1055 °C	
Влажность	< 90 %	

Высота над уровнем моря	≤ 2000 M	
	ГОСТ 30804.6.3-2013 (IEC 61000-6-3:2006)	
Электроматнитная совместимость	ГОСТ 30804.6.2-2013 (IEC 61000-6-2:2005)	

10.2.2 Клещи С-4А

Клещи С-4А предназначены для измерения силы переменного тока в электроустановках низкой и средней мощности. Выходным сигналом является напряжение, пропорциональное измеряемому току. Выходной сигнал проходит по кабелю 2,2 м, заканчивающимся соответствующей вилкой, подходящей к гнезду разъема в измерителе.

Стрелка, расположенная на одной из губок **указывает направление протекания тока**. Считается, что ток течёт в положительном направлении, если он протекает от источника к нагрузке. Такая ориентация клещей необходима для правильного измерения мощности.

		Нельзя измерять токи выше 1200 А. Следует ограничить время измерения тока до 1000 А,					
2	<u>.</u>	согласно следующим данным:					
		Диапазон тока	$I \le 1000 \text{ A}$		1000 A < I ≤	1200 A	
De	Do			15	минут	измерения,	
	Режим работы		непрерывный	след	ующие 30 ми	инут перерыв.	
1)	¹⁾ Для частоты f \leq 1 кГц. Ограничения максимального значения тока при непрерывной работе для						
частоты выше 1 кГц в соответствии с зависимостью I _{макс} = 1000 A/f [кГц].							

Нормальные условия для поверки		
Температура	2026 °C	
Относительная влажность	2075 %	
Позиция провода	провод в центре, относительно зажимов клещей	
Частота синусоидального тока	4865 Гц	
Коэффициент гармонических искажений	< 1%	
Постоянная составляющая тока	Отсутствует	
Постоянное магнитное поле	≤ 40 А/м (магнитное поле Земли)	
Переменное внешнее магнитное поле	Отсутствует	
Провода в непосредственной близости	Отсутствие протекающего по ним тока	

Диапазон тока	Основная погрешность ⁽¹⁾	Ошибка фазы
0,110 A	±(3% + 0,1 A)	не указана
1050 A	±3%	±3°
50200 A	±1,5%	±1,5°
2001000 A	±0,75%	±0,75°
10001200 A	±0,5%	±0,5°

(1) в % от измеряемой величины.

Технические параметры		
Выходной сигнал для максимального тока	1 В переменного тока	
Соотношение	1 мВ / 1 А для переменного тока	
Частотный диапазон	30 Гц5 кГц	
	двойная, в соответствии с	
	ГОСТ IEC 61010-2-032-2014	
Измерительная категория по	III 600 B	
FOCT IEC 61010-2-032-2014		
Степень защиты, согласно	IP40, с открытыми губками IP30	
FOCT 14254-2015 (IEC 60529:2013)		
Размеры	216 х 111 х 45 мм	
Масса	около 550 г	
Раскрытие зажимов	53 мм	
Охват открытых зажимов	139 мм	
Максимальный диаметр измеряемого провода	Ø 52 мм	
Длина кабеля клещей	2,2 м	
Диапазон рабочих температур	-1055 °C	
Влажность	< 90 %	
Высота над уровнем моря	≤ 2000 m	
	ГОСТ 30804.6.3-2013 (IEC 61000-6-3:2006)	
	FOCT 30804.6.2-2013 (IEC 61000-6-2:2005)	

10.2.3 Клещи С-5А

Клещи С-5А предназначены для измерения силы переменного и постоянного тока без разрыва цепи с протекающим током. Измерительный диапазон составляет 1400 А для постоянного тока и 1000 А для переменного тока. Выходным сигналом является напряжение, пропорциональное измеряемому току. Клещи имеют один диапазон измерения 1000 А, с чувствительностью 1 мВ/А, вращающийся регулятор настройки нуля и светодиодный индикатор питания.

Выходной сигнал проходит по кабелю 2,2 м, заканчивающимся соответствующей вилкой, подходящей к гнезду разъёма в измерителе.

Стрелка, расположенная на одной из губок указывает направление протекания тока. Считается, что ток течёт в положительном направлении, если он протекает от источника к нагрузке. Такая ориентация клещей необходима для правильного измерения мощности.

	Диапазон измерения постоянного тока	I ≤ 3000 A		
	Режим работы	непрерывный		
	Диапазон измерения переменного тока	$I \le 1000 \text{ A}$		
	Режим работы	непрерывный ¹		
$^{(1)}$ Для частоты f \leq 1 кГц. Ограничения максимального значения тока при непрерывной работе для				
ч	частоты выше 1 кГц в соответствии с зависимостью I _{макс} = 1000 A/f [кГц].			

Включение:

- <u>Питание от батареек</u>. Перевести переключатель в положение ВКЛ (ON). Зелёный светодиод сигнализирует о правильной работе. Клещи автоматически выключаются через 10 минут бездействия;
- <u>Питание от батареек</u>. Перевести переключатель в положение ВКЛ (ON), одновременно удерживая кнопку DC ZERO. Оранжевый светодиод сигнализирует о правильной работе. Клещи не выключаются автоматически и работают до тех пор, пока батарейка не разрядится;
- <u>Внешнее питание</u>. Подключите к клещам питание через разъём USB. Оранжевый светодиод сигнализирует о правильной работе. Клещи выключаются после отключения питания.

Если после переключения светодиод не горит или гаснет во время измерений, то необходимо заменить элемент питания.

Сигнализация превышения диапазона измерения:

• Если измеряемый ток превысит диапазон измерения клещей, загорается светодиод OL.

Корректировка показания нуля для постоянного тока:

- Включить клещи;
- Убедиться, что губки закрыты и не охватывают никакого провода;
- Подключить клещи к измерителю;
- Нажать кнопку DC ZERO. Светодиод OL загорится примерно на 3 секунды, сигнализируя процесс коррекции;
- Светодиод OL погаснет, когда коррекция успешно закончится. Если он не гаснет это означает, что коррекция не может быть выполнена. В такой ситуации необходимо проверить: не охватывают ли клещи какой-то проводник и полностью ли сомкнуты губки. Необходимо снова нажать кнопку DC ZERO или выключить и включить клещи, после чего повторить процедуру.

Клещи после своего включения устанавливают последнюю сохранённую коррекцию.

Нормальные условия для поверки		
Температура	1828 °C	
Относительная влажность	2075 %	
Позиция провода	провод в центре, относительно зажимов клещей	
Ток	DC65 Гц	
Постоянное магнитное поле	≤ 40 А/м (магнитное поле Земли)	
Переменное внешнее магнитное поле	отсутствует	

Диапазон тока AC/DC	Основная погрешность ⁽¹⁾
0,5100 A	±(2% + 1,5 A)
100800 A	±2,5%
8001000 A AC	±4%
10001400 A DC	±5%

(1) в % от измеряемой величины

Диапазон тока	Ошибка фазы (4565 Гц)
3200 A	-2 °
2001000 A	-1,5 °

Дополнительная погрешность				
от частоты переменного тока:				
10400 Гц	1%			
4007000 Гц	3,5%			
от температуры окр. среды -1055 °С:				
- дрейф нуля	±100 мА/°С			
-дрейф услиления	3%			
от относительной влажности в диапазоне 1085%	0,5%			
от положения провода $arnothing$ 20 мм	0,5%			
от параллельного проводника с переменным током 50 Гц на расстоянии 23 мм от клещей.	10 mA/A			
от внешнего магн.поля 400 А/м (50 Гц) на провод в центре клещей	1,3 A			
от подавления синфазного сигнала	90 дБ А/В (50 Гц)			

Технические параметры				
Соотношение 1 мВ / 1 А				
Частотный диапазон DC5 кГц				
Выходное сопротивление	215 Om			
	двойная, в соответствии с			
	ГОСТ IEC 61010-2-032-2014			
Категория электробезопасности	III 600 B / IV 300 B			
Степень защиты, согласно ГОСТ 14254-2015	IB40			
(IEC 60529:2013)	1740			
Питацию	от батарей типа 6LR61 9 В			
Питание	через порт microUSB 5 B/100 мА			
Время работы от алк.батареки	около 50 ч.			
Размеры	237 х 97 х 44 мм			
Масса	около 520 г			
Максимальный диаметр измеряемого	<i>d</i> 20 mm			
провода				
Длина кабеля клещей	2,2 м			
Диапазон рабочих температур	-1055 °C			
Влажность	< 90 %			
Высота над уровнем моря	≤ 2000 m			
	ГОСТ 30804.6.3-2013 (IEC 61000-6-3:2006)			
	ГОСТ 30804.6.2-2013 (IEC 61000-6-2:2005)			

10.2.4 Клещи С-6А

Клещи С-6А предназначены для измерения силы переменного тока частотой до10 кГц в диапазоне 10 мА...10А. В качестве аксессуара к приборам компании SONEL S.A. , они совместимы с

анализаторами качества электроэнергии серии PQM/TKM и многофункциональными измерителями серии MPI/TMM.

Выходным сигналом является напряжение, пропорциональное измеряемому току с чувствительностью 100 мВ/А. Он проходит по кабелю 2,2 м, заканчивающимся соответствующей вилкой, подходящей к гнезду разъёма в измерителе.

Стрелка, расположенная на одной из губок указывает направление протекания тока. Считается, что ток течёт в положительном направлении, если он протекает от источника к нагрузке. Такая ориентация клещей необходима для правильного измерения мощности.

Нормальные условия для поверки				
Температура	2026 °C			
Относительная влажность	2075 %			
Позиция провода	провод в центре, относительно зажимов клещей			
Частота синусоидального тока	4865 Гц			
Коэффициент гармонических искажений	<1 %			
Постоянная составляющая тока	Отсутствует			
Постоянное магнитное поле	≤ 40 А/м (магнитное поле Земли)			
Переменное внешнее магнитное поле	Отсутствует			
Провода в непосредственной близости	Отсутствие протекающего по ним тока			

Диапазон тока	Диапазон тока Основная погрешность ⁽¹⁾	
0,010,1 A ±(3% + 1 mA)		не определена
0,11 A	±2,5%	±5°
112 A	±1%	±3°

(1) в % от измеряемой величины

Технические параметры				
Соотношение	100 мВ / 1 А для переменного тока			
Частотный диапазон	40 Гц10 кГц			
	двойная, в соответствии с			
Класс защиты	ГОСТ IEC 61010-2-032-2014			
Измерительная категория по ГОСТ ІЕС 61010-2-032-	III 600 B			
2014				
Степень защиты, согласно ГОСТ 14254-2015 (IEC	IP40, с открытыми губками IP30			
60529:2013)				
Размеры	135 х 50 х 30 мм			
Масса	около 180 г			
Раскрытие зажимов	21 мм			
Охват открытых зажимов	69 мм			
Максимальный диаметр измеряемого провода	Ø 20 мм			
Длина кабеля клещей	2,2 м			
Диапазон рабочих температур	-1055 °C			
Влажность	< 90 %			
Высота над уровнем моря	≤ 2000 M			
	ГОСТ 30804.6.3-2013 (IEC 61000-6-3:2006)			
	ГОСТ 30804.6.2-2013 (IEC 61000-6-2:2005)			

10.2.5 Клещи С-7А

Клещи С-7А предназначены для измерения силы переменного тока в сетях низкой и средней мощности в диапазоне до 100 А.

Выходным сигналом является напряжение, пропорциональное измеряемому току с чувствительностью 5 мВ/А. Он проходит по кабелю 3 м, заканчивающимся соответствующей вилкой, подходящей к гнезду разъёма в измерителе.

Стрелка, расположенная на одной из губок **указывает направление протекания тока**. Считается, что ток течёт в положительном направлении, если он протекает от источника к нагрузке. Такая ориентация клещей необходима для правильного измерения.

Нормальные условия для поверки			
Температура 1828 °С			
Относительная влажность	<85 % (без конденсации влаги)		

Частота	Основная погрешность	Ошибка фазы	
4565 Гц	±(0,5% ±0,02 A) ±2°		
40 Гц1 кГц	±(1,0% + 0,04 A)	не определена	

Технические параметры					
Соотношение	5 мВ / 1 А для переменного тока				
Частотный диапазон	40 Гц3 кГц				
Полное выходное сопротивление	10 Ом				
	двойная, в соответствии с				
Пласс защиты	FOCT IEC 61010-2-032-2014				
Измерительная категория по ГОСТ ІЕС 61010-2-032-2014	III 300 B				
Размеры	100 х 60 х 26 мм				
Масса	около 160 г				
Максимальный диаметр измеряемого провода	Ø 24 мм				
Длина кабеля клещей	3 м				
Диапазон рабочих температур	050 °C				
Относительная влажность	< 85% (без конденсации влаги)				
Электромагнитная совместимость	ГОСТ Р МЭК 61326-1-2014				

10.2.6 Клещи F-1, F-2A, F-3A

Гибкие клещи (катушка Роговского) F-1, F-2A и F-3A предназначены для измерения силы переменного тока с частотой до 10 кГц в диапазоне 1 А...3000 А.

Гибкие клещи F-1, F-2A и F-3A отличаются между собой только окружностью катушки. Электрические параметры их одинаковые. Выходным сигналом является напряжение, пропорциональное производной измеряемого тока с чувствительностью 38,83 мB/1000 A для 50 Гц и 46,6 мB/1000 A для 60 Гц.

Рис. 10.1 Клещи F-1

Рис. 10.2 Клещи F-2A

Рис. 10.3 Клещи F-3А

Выходной сигнал проходит по кабелю 2,2 м, заканчивающимся соответствующей вилкой, подходящей к гнезду разъёма в измерителе.

Стрелка, расположенная на застежке клещей **указывает направление протекания тока**. Считается, что ток течёт в положительном направлении, если он протекает от источника к нагрузке. Такая ориентация клещей необходима для правильного измерения мощности.

Нормальные условия для поверки			
Температура	1822 °C		
Позиция провода	провод в центре относительно петли клещей		
Постоянное магнитное поле	≤ 40 А/м (магнитное поле Земли)		
Переменное внешнее магнитное поле	Отсутствует		
Внешнее электрическое поле	Отсутствует		

Технические характеристики				
Номинальный диапазон измерения	13000 А (10000 А пиковое для 50 Гц)			
Коэффициент вход/выход	38,83 мВ/1000 А (50 Гц), 46,6 мВ/1000 А (60 Гц)			
Основная погрешность	±1% в диапазоне 13000 А			
Дополнительная погрешность от положения	+1% May CIMA 1640			
провода				
Класс защиты	Двойная изоляция, в соответствии с			
	FOCT IEC 61010-2-032-2014			
Измерительная категория по ГОСТ IEC 61010-2-	III 1000 B / IV 600 B			
032-2014				
Степень защиты, согласно ГОСТ 14254-2015	IP67			
(IEC 60529:2013)				
Длина окружности F-1	120 см			
Длина окружности F-2A	80 см			
Длина окружности F-3A	45 см			
Внутренний диаметр после застегивания F-1	380 мм			
Внутренний диаметр после застегивания F-2A	250 мм			
Внутренний диаметр после застегивания F-3A	140 мм			
Macca F-1	около 200 г			
Macca F-2A	около 170 г			
Macca F-3A	около 140 г			
Длина кабеля гибких клещей	2,5 м			
Диапазон рабочих температур	-3080 °C			
Электромагнитная совместимость	FOCT 30804.6.3-2013 (IEC 61000-6-3:2006)			

10.2.7 Клещи N-1

Клещи N-1, как дополнительный аксессуар к приборам компании SONEL S.A., используются вместе с измерителями сопротивления заземления серии MRU/TE в качестве передающих клещей при измерении двумя клещами. Выходной сигнал проходит через два разъёма «банан».

	Нельзя измерять токи выше 1200 А. Следует ограничить время измерения тока до 1000 А,						
2	согласно следующим данным:	ڬ согласно следующим данным:					
	Диапазон тока	$I \le 1000 \text{ A}$	1000 A < I ≤ 1200 A				
		непрерывный ¹	15	минут	измерения,		
	Гежим рассты		след	ующие 30 м	инут перерыв.		
¹⁾ Для частоты f \leq 1 кГц. Ограничения максимального значения тока при непрерывной работе для					юй работе для		
ч	частоты выше 1 кГц в соответствии с зависимостью І _{макс} = 1000 А/f [кГц].						

Нормальные условия для поверкиТемпература20...26 °CОтносительная влажность20...75 %Позиция проводапровод в центре, относительно зажимов клещейПостоянное магнитное поле≤ 40 А/м (магнитное поле Земли)Переменное внешнее магнитное полеОтсутствуетПровода в непосредственной близостиОтсутствие протекающего по ним тока

Технические параметры	
Выходной сигнал для максимального тока	1 А переменного тока
Коэффициент	1/1000 A
Частотный диапазон	30 Гц5 кГц
Класс защиты	двойная, в соответствии с
	ГОСТ IEC 61010-2-032-2014
Измерительная категория по	III 600 B
ГОСТ IEC 61010-2-032-2014	
Степень защиты, согласно	IP40, с открытыми губками IP30
ГОСТ 14254-2015 (IEC 60529:2013)	
Размеры	216 х 111 х 45 мм
Масса	около 550 г
Раскрытие зажимов	53 мм
Охват открытых зажимов	139 мм
Максимальный диаметр измеряемого провода	Ø 52 мм
Диапазон рабочих температур	-1055 °C
Влажность	< 90 %
Высота над уровнем моря	≤ 2000 m
Электромагнитная совместимость	ГОСТ 30804.6.3-2013 (IEC 61000-6-3:2006)
	ГОСТ 30804.6.2-2013 (IEC 61000-6-2:2005)

11 ПОЛОЖЕНИЯ КРЫШКИ ИЗМЕРИТЕЛЯ

Подвижная крышка позволяет использовать измеритель в различных положениях.

- 1 Крышка снизу измерителя.
- 2 Крышка как подставка.
- 3 Крышка в положении, позволяющем удобно пользоваться измерителем, носимым на шее с помощью ремней.

12 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

В случае нарушения правил эксплуатации оборудования, установленных Изготовителем, может ухудшиться защита, применяемая в данном приборе.

Корпус измерителя можно чистить мягкой влажной фланелью. Нельзя использовать растворители, абразивные чистящие средства (порошки, пасты и так далее).

Электронная схема измерителя не нуждается в чистке, за исключением гнёзд подключения измерительных проводов.

Измеритель, упакованный в потребительскую и транспортную тару, может транспортироваться любым видом транспорта на любые расстояния.

Допускается чистка гнёзд подключения измерительных проводов с использованием безворсовых тампонов.

Все остальные работы по обслуживанию проводятся только в авторизированном Сервисном Центре ООО «СОНЭЛ».

Ремонт прибора осуществляется только в авторизованном Сервисном Центре.

13 УТИЛИЗАЦИЯ

Измеритель, предназначенный для утилизации, следует передать Производителю. В случае самостоятельной утилизации её следует проводить в соответствии с действующими правовыми нормами.

14 ПОВЕРКА

Измеритель параметров электробезопасности электустановок ТММ-540 в соответствии с Федеральным законом РФ №102 «Об обеспечении единства измерений» ст.13, подлежит поверке.

Методика поверки доступна для загрузки на сайте www.poverka.ru

Межповерочный интервал – 1 год.

МЕТРОЛОГИЧЕСКАЯ СЛУЖБА ООО «СОНЭЛ» осуществляет поверку как собственного парка реализуемого оборудования, так и приборов остальных производителей, и обеспечивает бесплатную доставку СИ в поверку и из поверки экспресс почтой. 115533, г. Москва, пр-т Андропова, д.22, БЦ «Нагатинский», этаж 19, оф.1902. Тел.: 8 (800) 550-27-57 доб.501 или +7 (495) 465-80-25 E-mail: standart@sonel.ru Internet: www.poverka.ru

15 СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ

ООО «СОНЭЛ», Россия Юридический адрес: 142713, Московская обл., Ленинский р-н, д. Григорчиково, ул. Майская, д.12.

Адрес осуществления деятельности: 142721, Московская обл., Ленинский р-н, д. Мисайлово, ул. Первомайская, д.158А. Тел.: 8 (800) 550-27-57 E-mail: info@sonel.ru Internet: www.sonel.ru

16 СВЕДЕНИЯ О СЕРВИСНОМ ЦЕНТРЕ

Гарантийный и послегарантийный ремонт осуществляет авторизованный Сервисный Центр компании СОНЭЛ и обеспечивает бесплатную доставку приборов и СИ в ремонт/из ремонта экспресс почтой.

Сервисный Центр расположен по адресу: 115533, г. Москва, пр-т Андропова, д.22, БЦ «Нагатинский», этаж 19, оф.1902. Тел.: 8 (800) 550-27-57 доб.501 или +7 (495) 465-80-25 E-mail: standart@sonel.ru Internet: www.poverka.ru

17 ССЫЛКИ В ИНТЕРНЕТ

Каталог продукции SONEL

http://www.sonel.ru/ru/products/ Электронная форма заказа услуг поверки электроизмерительных приборов. http://poverka.ru/main/request/poverka-request/ Электронная форма заказа ремонта приборов SONEL http://poverka.ru/main/request/repair-request/ Аренда оборудования и приборов https://priborvarendu.ru/

ИЗМЕРИТЕЛЬНЫЕ СООБЩЕНИЯ

Измеритель ТММ-540 предназначен для работы при номинальных фазных напряжениях 110 В, 115 В, 127 В, 220 В, 230 В и 240 В и линейных напряжениях 190 В, 200 В, 220 В, 380 В, 400 В, 415 В.

Подключение напряжения выше, чем допустимое между любыми измерительными зажимами может привести к повреждению прибора и создать опасность для пользователя.

	Измерение Zs	
L-N!	Недопустимое напряжение U _{L-N} для выполнения измерения.	
L-PE!	Недопустимое напряжение U _{L-PE} для выполнения измерения.	
N-PE!	Напряжение U _{N-PE} превышает допустимое значение 50 В.	
L ↔ N	Фаза подключена к контакту N вместо L (например, замена L и N в сетевой розетке).	
TEMPERATURA!	Превышена температура внутри измерителя.	
f!	Частота сети находится за пределами диапазона 45 Гц65 Гц.	
BŁĄD!	Ошибка измерения. Отображение правильного результата невозможно.	
Повреждение цепи		
короткого Измеритель необходимо отдать в сервисную службу.		
замыкания		
<mark>U>500V!</mark> и непрерывный звуковой сигнал	На измерительных разъёмах перед измерением напряжение превышает 500 В.	
NAPIĘCIE!	Напряжение на тестируемом объекте находится за пределами границ,	
	соответствующих заданному номинальному напряжению сети U _n .	
LINALTI	Слишком низкое значение ожидаемого тока короткого замыкания I _k для	
	заданного устройства зашиты и времени его срабатывания.	
Измерение R _E		
NAPIĘCIE!	Слишком высокое напряжение на гнёздах измерителя.	
H!	Обрыв в цепи токового зонда.	
S!	Обрыв в цепи зонда напряжения.	
R _E >1,99kΩ	Превышен измерительный диапазон.	
SZUM!	Слишком маленькое значение отношения сигнал/шум (слишком большой сигнал помехи).	
LIMIT!	Погрешность измерения R _E от сопротивления электрода > 30% (для расчёта погрешности взяты измеренные значения).	
	Обрыв в цепи измерения или сопротивление измерительных зондов больше, чем 60 кОм	
Измерение УЗО		
U _B >U _L !	Напряжение прикосновения превышает заданное пороговое значение U _L .	
!	Отметка о неисправности УЗО с правой стороны результата.	
РЕ! и непрерывный звуковой сигнал	Напряжение между сенсорным электродом и РЕ превышает допустимое порговое значение U _L .	
Измерение R _{iso}		
и непрерывный звуковой сигнал	Обнаружено присутствие напряжения на гнёёздах измерителя. Измерение невозможно.	
SZUM!	На тестируемом объекте возникло напряжение помех. Измерение возможно, однако, может получить дополнительную погрешность.	

LIMIT!

Сработало ограничение по току. Отображение символа во время измерения сопровождается непрерывным звуковым сигналом. Если он отображается после измерения, то это значит, что результат измерения получен при работе с ограничением тока (например, замыкание на тестируемом объекте).