Keysight M3300A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming 500 MSa/s, 16 Bits, 2/4 Channel AWG 100 MSa/s, 14 Bits, 4/8 Channel Digitizer

Data Sheet

Fast, Flexible, High-Performance Control, Testing and Prototyping

The M3300A combines high-performance with arbitrary waveform generator channels and digitizer channels in the same module providing the ideal tool for testing and prototyping in control or communications applications. Performance meets simplicity thanks to easy-to-use programming libraries, real-time sequencing technology (Hard Virtual Instrumentation or HVI), and graphical FPGA programming technology.

Features

Outputs (AWG)

- 500 MSa/s, 16 Bits, 2/4 Channels

Inputs (digitizer)

- 100 MSa/s, 14 Bits, 4/8 Channels

Output features

- AWGs, function generators, AM/FM/PM modulators
- Advanced triggering and marking functionalities

Input features

- Powerful data acquisition system (DAQ)
- Advanced triggering and marking functionalities

Less than 400 ns input to output latency

Optional HW programming for high-performance applications

- Real-time sequencing (HVI technology)
- FPGA programming
 - Xilinx Kintex-7 325T or 410T FPGA

Up to 2 GB of onboard RAM (~ 1 Gsamples)

Mechanical/interface

- 2 slots 3U (PXIe)
- Up to 1.6 GB/s transfer BW with P2P capabilities (PCIe Gen 2)
- Independent DMA channels for fast and efficient data transfer

Applications

General purpose AWGs & digitizers

High-performance control

Communications: BB/IF SDR, channel emulation, transceiver testing

Aerospace & defense (A/D): RADAR, electronic warfare (EW)

Hardware-in-the-loop (HIL), automated test equipment (ATE)

Scientific research

Quantum computing

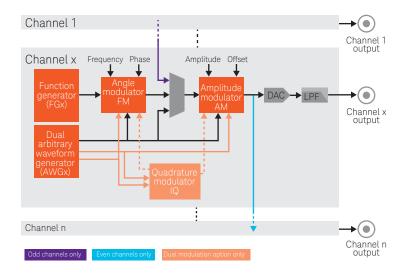
Programming Technology and Software Tools

Software programming

- Easy-to-use native programming libraries for most common languages: C, C++, Visual Studio, LabVIEW, MATLAB, Python, and more

Hardware programming (optional)

- Real-time sequencing (Hard Virtual Instrumentation or HVI technology)
 - Graphical flowchart-style M3601A design environment (-HV1 option required on HW)
 - Ultra-fast, fully-parallelized, hard real-time execution
 - Ultra-fast, time-deterministic decision-making
 - Off-the-shelf inter-module synchronization & data exchange
- FPGA programming
 - Graphical M3602A FPGA design environment (-FP1 option required on HW)
 - No FPGA know-how required
 - Include high-level to low-level design elements: off-the-shelf DSP blocks, MATLAB/Simulink designs, Xilinx CORE Generator IP cores, Xilinx VIVADO/ISE projects, VHDL or Verilog code
 - Ultra-fast, one-click compiling and on-the-fly programming


No programming

- Ready-to-use SD1 SPF (software front panels)

			Outputs	(AWGs)	Ir	nputs (Di	gitizers	5)
Product	Туре	Speed (MSa/s)	Bits	Ch	BW (MHz)	Speed (MSa/s)	Bits	Ch	BW (MHz)
M3202A	AWG	1000	14	2/4	DC-400				
M3201A	AWG	500	16	2/4	DC-200				
M3102A	Digitizer					500	14	2/4	DC-200
M3100A	Digitizer					100	14	4/8	DC-100
M3302A	Combo	500	16	2	DC-200	500	14	2	DC-200
M3300A	Combo	500	16	2/4	DC-200	100	14	4/8	DC-100

PXIe Arbitrary Waveform Generators, Digitizers and Combination Modules

Functional Block Diagram Output - Arbitrary Waveform Generator

Input - Digitizer

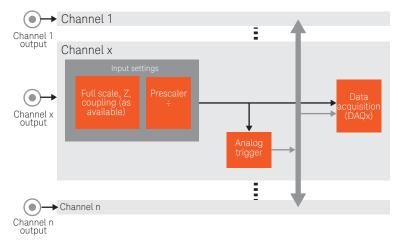


Figure 2. M3300A input functional block diagram, all channels have identical input structure

AWG Technical Specifications and Characteristics

General characteristics

	M	3300A-0	24	M	3300A-C	48		
Parameter	Min	Тур	Мах	Min	Тур	Max	Units	Comments
Inputs and outputs	I							
Channels (single-ended mode)		2			4		Out	
Channels (differential mode)		1			2		Out	Differential uses 2 channels
Reference clock ¹		1			1		Out	
Reference clock ²		1			1		In	
Triggers/markers ^{1,3}		1			1		In/out	Reconfigurable
Triggers/markers ^{2,3}		8			8		In/out	Reconfigurable
Output channels overview								
Sampling rate		500			500		MSa/s	Fixed sampling clock
Voltage resolution		16			16		Bits	
Output frequency	DC		200	DC		200	MHz	
Real-time BW			200			200	MHz	
Output voltage	-1.5		1.5	-1.5		1.5	Volts	
Built-in functionalities								
Function generators		2			4			1 per channel
Dual AWGs		2			4			1 per channel
IQ modulators		2			4			1 per channel
Frequency modulators		2			4			1 per channel
Phase modulators		2			4			1 per channel
Amplitude modulators		2			4			1 per channel
DC offset modulators		2			4			1 per channel
Onboard memory								
RAM memory	16		2048	16		2048	MBytes	

At front panel
At backplane
Markers available from firmware version v3.0 or later

I/O specifications

	M	3300A-C24			M3300A-C4	8		
Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Comments
Output channels								
Sampling rate		500			500		MSa/s	Fixed sampling clock
Output frequency	DC		200	DC		200	MHz	Limited by a reconstruction filter
Output voltage	-1.5		1.5	-1.5		1.5	Volts	On a 50 Ω load
Source impedance		50			50		Ω	
Reference clock output								
Frequency		10 or 100			10 or 100		MHz	Generated from the internal clock, user selectable
Voltage		800			800		mV _{pp}	On a 50 Ω load
Power		2			2		dBm	On a 50 Ω load
Source impedance		50			50		Ω	AC coupled
External I/O trigger/marker								
V _{IH}	2		5	2		5	V	
V _{IL}	0		0.8	0		0.8	V	
V _{OH}	2.4		3.3	2.4		3.3	V	On a high Z load
V _{OL}	0		0.5	0		0.5	V	On a high Z load
Input impedance		10			10		KΩ	
Source impedance		TTL			TTL		-	
Speed			500			500	Mbps	

	M	300A-C	24	M	3300A-C	48		
Parameter	Min	Тур	Мах	Min	Тур	Max	Units	Comments
General specifications								
Function generators		2			4		-	1 per channel
Waveform types		4			4		-	Sinusoidal, triangular, square and DC
Frequency range	0		200	0		200	MHz	
Frequency resolution		45			45		Bits	
Frequency resolution		5.7			5.7		μHz	
Phase range	0		360	0		360	Deg	
Phase resolution		24			24		Bits	
Phase resolution		21.5			21.5		µdeg	
Speed performance								
Frequency change rate			100			100	MChanges/s	With HVI technology
Frequency modulation rate			500			500	MSamples/s	With AWGs and angle modulators
Phase change rate			100			100	MChanges/s	With HVI technology
Phase modulation rate			500			500	MSamples/s	With AWGs and angle modulators

Function generators (FGs) specifications

Amplitude and offset specifications

	M3300		24	M	3300A-C	48		
Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Comments
General specifications								
Amplitude/offset range	-1.5		1.5	-1.5		1.5	Volts	Amplitude + offset values
Amplitude/offset resolution		16			16		Bits	
Amplitude/offset resolution		45.8			45.8		μV	
Speed performance								
Amplitude/offset change rate			500			500	MChanges/s	With HVI technology
Amplitude/offset modulation rate	500			500		MSamples/s	With AWGs and amplitude modulators	

Arbitrary waveform generators (AWGs) specifications

	M	3300A-C	24	M	3300A-C	48		
Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Comments
General specifications								
Dual AWGs		2			4			1 Dual AWG per output channel
Aggregated speed (16 bits)			2000			4000	MSa/s	For all onboard waveforms combined
Aggregated speed (32 bits)			1000			2000	MSa/s	For all onboard waveforms combined
Waveform multiple		5			5		Samples	Waveform length must be a multiple of this value
16-bit waveform length	15	•	957M	15		957M	Samples	Maximum depends on onboard RAM
32-bit waveform length	10		478M	10		478M	Samples	Maximum depends on onboard RAM
Vaveform length efficiency		93.5			93.5		%	Effic. = waveform size/waveform size in RAM
Frigger		Selec.			Selec.			External Trigger (input connector, backplane triggers), software trigger
AWG specifications (16-bit sing	le wavefo	rm)						
Speed			500			500	MSa/s	Per AWG
Resolution		16			16		Bits	
AWG destination		Selec.			Selec.			Amplitude, offset, frequency or phase
AWG specifications (16-bit dual	waveform	n)						
Speed (waveform A)			500			500	MSa/s	Per AWG
Speed (waveform B)			500			500	MSa/s	Per AWG
Resolution (waveform A)		16			16		Bits	
Resolution (waveform B)		16			16		Bits	
AWG destination (waveform A)		Selec.			Selec.			Amplitude, offset or I
AWG destination (waveform B)		Selec.			Selec.			Frequency, phase or Q
AWG specifications (32-bit sing	le wavefo	rm)						
Speed			100			100	MSa/s	Per AWG, minimum prescaler: 1
Resolution		32			32		Bits	
AWG destination		Selec.			Selec.			Amplitude, offset, frequency or phase
AWG specifications (32-bit dual	waveform	n)						
Speed (waveform A)			100			100	MSa/s	Per AWG, minimum prescaler: 1
Speed (waveform B)			100			100	MSa/s	Per AWG, minimum prescaler: 1
Resolution (waveform A)		32			32		Bits	
Resolution (waveform B)		32			32		Bits	
AWG destination (waveform A)		Selec.			Selec.			Amplitude or offset
AWG destination (waveform B)		Selec.			Selec.			Frequency or phase

Angle modulators specifications

	M	3300A-C	24	м	3300A-0	48		
Parameter	Min	Тур	Мах	Min	Тур	Max	Units	Comments
General specifications								
Frequency modulators		2			4			1 per output channel
Phase modulators		2			4			1 per output channel
Carrier signal source		FGs			FGs			Table 3 on page 8
Modulating signal source		AWGs			AWGs			Table 5 on page 9
Frequency modulators (16-bit	modulating wa	aveform)						
Deviation	–Dev. gain		+Dev. gain	–Dev. gain		+Dev. gain	MHz	
Modulating signal resolution		16			16		Bits	AWG waveform
Modulating signal BW	0		250	0		250	MHz	AWG Nyquist limit
Deviation gain	0		200	0		200	MHz	
Deviation gain resolution		16			16		Bits	
Frequency modulators (32-bit	modulating wa	aveform)						
Deviation	–Dev. gain		+Dev. gain	–Dev. gain		+Dev. gain	MHz	
Modulating signal resolution		32			32		Bits	AWG waveform
Modulating signal BW	0		50	0		50	MHz	AWG Nyquist limit
Deviation gain	0		200	0		200	MHz	
Deviation gain resolution		16			16		Bits	
Phase modulators (16-bit mod	lulating wavefo	orm)						
Deviation	–Dev. gain		+Dev. gain	–Dev. gain		+Dev. gain	Deg	
Modulating signal resolution		16			16		Bits	AWG waveform
Modulating signal BW	0		250	0		250	MHz	AWG Nyquist limit
Deviation gain	0		180	0		180	Deg	
Deviation gain resolution		16			16		Bits	~ 5.5 mdeg
Phase modulators (32-bit mod	lulating wavefo	orm)						
Deviation	–Dev. gin		+Dev. gain	–Dev. gain		+Dev. gain	Deg	
Modulating signal resolution		16			16		Bits	AWG waveform is truncated
Modulating signal BW	0		50	0		50	MHz	AWG Nyquist limit
Deviation gain	0		180	0		180	Deg	
Deviation gain resolution		16			16		Bits	~ 5.5 mdeg

Amplitude modulators specifications

	М	3300A-C	24	M	3300A-0	C48		
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Comments
General specifications								
Amplitude modulators		2			4			1 per output channel
Offset modulators		2			4			1 per output channel
Carrier signal source		FGs			FGs			Table 3 on page 8
Modulating signal source		AWGs			AWGs			Table 5 on page 9
Amplitude & offset modulators (16-bit modula	ting wave	eform)					
Deviation	–Dev. gain		+Dev. gain	–Dev. gain		+Dev. gain	Vp	
Modulating signal resolution		16			16		Bits	AWG waveform
Modulating signal BW	0		250	0		250	MHz	AWG Nyquist limit
Deviation gain	0		1.5	0		1.5	Vp	
Deviation gain resolution		16			16		Bits	Limited by the output DAC
Amplitude & offset modulators (32-bit modula	ting wave	eform)					
Deviation	–Dev. gain		+Dev. gain	–Dev. gain		+Dev. gain	Vp	
Modulating signal resolution		16			16		Bits	AWG waveform is truncated
Modulating signal BW	0		50	0		50	MHz	AWG Nyquist limit
Deviation gain	0		1.5	0		1.5	Vp	
Deviation gain resolution		16			16		Bits	Limited by the output DAC

IQ modulators specifications

		M3300A			
Parameter	Min	Тур	Мах	Units	Comments
General specifications					
IQ modulators		2			1 per output channel
Carrier signal source		FGs			Table 3 on page 8
Modulating signal source		AWGs			Table 5 on page 9
External I/O trigger/marker					
Amplitude deviation	-1.5		1.5	Vp	
Phase deviation	-180		180	Deg	
I modulating signal resolution		16		Bits	AWG waveform
I modulating signal BW	0		250	MHz	AWG Nyquist limit
Q modulating signal resolution		16		Bits	AWG waveform
Q modulating signal BW	0		250	MHz	AWG Nyquist limit

Clock system specifications

	M3300A-C24		M3300A-C48					
Parameter	Min	Min Typ Max		Min	Тур Мах		Units	Comments
General specifications								
Clock frequency	500		500		500 MHz		Fixed sampling clock	

AC performance

	Μ	3300A-C	24	M	3300A-C	48		
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Comments
General characteristics								
Analog output jitter			<2			<2	ps	RMS (cycle-to-cycle)
AWG trigger to output jitter			<2			<2	ps	RMS (cycle-to-cycle) for any trigger referenced to the chassis clock; independent of input trigger jitter if input jitter < 4nS peak-to-peak
Trigger resolution		10			10		ns	
Channel-to-channel skew			<20			<20	ps	Between ch 0 & ch 1, and ch 2 & ch 3
			<50			<50	ps	Between any channel
			150			150	ps	Between modules, chassis dependant ²
Clock output jitter			<2			<2	ps	RMS (cycle-to-cycle)
Clock accuracy and stability			25			25	ppm	PXIe, cPCIe versions; chassis dependent ¹
AC characteristics								
Spurious-free dynamic range (SFDR)								P _{out} = 4 dBm, measured from DC to max frequency
f _{out} = 10 MHz		68			68		dBc	
f _{out} = 80 MHz		64			64		dBc	
f _{out} = 120 MHz		57			57		dBc	
f _{out} = 160 MHz		54			54		dBc	
Crosstalk (adjacent channels)								
f _{out} = 10 MHz		<-105			<-105		dB	
f _{out} = 40 MHz		-85			-85		dB	
f _{out} = 80 MHz		-75			-75		dB	
f _{out} = 120 MHz		-88			-88		dB	
f _{out} = 160 MHz		-73			-73		dB	
f _{out} = 200 MHz		-85			-85		dB	
Crosstalk (non-adjacent channels)								
f _{out} = 10 MHz		<-105			<-105		dB	
f _{out} = 40 MHz		-86			-86		dB	
f _{out} = 80 MHz		-78			-78		dB	
f _{out} = 120 MHz		<-105			<-105		dB	
f _{out} = 160 MHz		-92			-92		dB	
f _{out} = 200 MHz		-100			-100		dB	
Phase noise (SSB)								
offset = 1 KHz		<-127			<-127		dBc/Hz	
offset = 10 KHz		<-133			<-133		dBc/Hz	
offset = 100 KHz		<-138			<-138		dBc/Hz	
Average noise power density		<-142			<-142		dBm/Hz	

1. This value corresponds to a M9505A chassis. This value can be improved with an external chassis clock or a system timing module.

This value corresponds to a M9505A chassis. This value corresponds to a M9005A PXIe chassis.

AC performance, typical

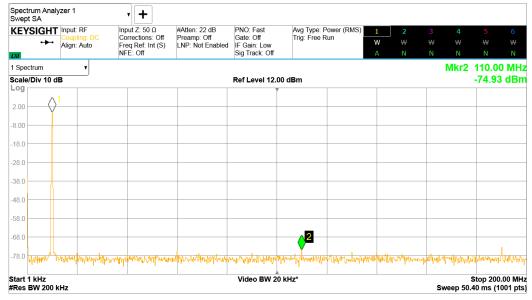


Figure 3. Single-tone spectrum @ f_{out} = 10 MHz

Swept SA	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) NFE: Off	s: Off Preamp: Off Gate: Off Trig: Free Run W W					3 4 ₩ ₩	5 ₩ N	6 ₩ N	
Spectrum	v IB	NFE. UII		Sig Track: Off	00 dBm		A	N	N N Mkr2	2 160.00 -69.28	MH:
.og				1							
2.00)							
3.00											
18.0											
28.0											
38.0											
48.0											
58.0									2		
68.0								(<u> </u>		
78.0 1000 1000	and a property of the	Handreyungertrager	rythetallinnouthant	in manager	LALLAN HAPPART	quanturting	hallonari	mplutum	how we have	hangentang	<mark>በለ</mark> ተኊለ
tart 1 kHz Res BW 200				Video BW 2	0 kHz*					Stop 200. 0.40 ms (10	

Figure 4. Single-tone spectrum @ f_{out} = 80 MHz

AC performance, typical

Spect Swept	rum Analy t SA	zer 1	• +										
KEY	SIGHT .≁·	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) NFE: Off	#Atten: 22 dB Preamp: Off LNP: Not Enabled	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: F Trig: Free F	Power (RMS) Run	1 W A	2 ₩ N	3 ₩ N	4 ₩ N	5 ₩ N	6 ₩ N
1 Spec	trum	۲								Ν		140.00	
Scale Log	/Div 10 dl	В			Ref Level 12.	.00 dBm						-58.33	dBm
							N1						
2.00)	V						
-8.00								_					
-18.0								_					
-28.0								_					
-38.0								_					
-48.0													
-58.0								<2					
-68.0													
							L.						
-78.0	lymhanna	uhanvloutedhaad	chiperon management	phenomenump	֊ւնգրողություն	WATTER BURNER	WILMWAR	manula	Marahan	phylip	n an the second s	epthology	alleration of
Start 1	1 kHz BW 200 k	U7			Video BW 2	0 kHz*	1			Sur		Stop 200. 10 ms (10	

Figure 5. Single-tone spectrum @ f_{out} = 120 MHz

Spectrum Analy Swept SA		• +							
KEYSIGHT	Input: RF	Input Z: 50 Ω Corrections: Off	#Atten: 22 dB Preamp: Off	PNO: Fast Gate: Off	Avg Type: P Trig: Free R	ower (RMS)	1 2		
•••	Coupling: DC Align: Auto	Freq Ref: Int (S)	LNP: Not Enabled	IF Gain: Low	Thy. Free R	un	₩ ₩		
LXI		NFE: Off		Sig Track: Off			A N	N N	N N
1 Spectrum	•							Mkr2	20.00 MH
Scale/Div 10 di	в			Ref Level 12.	00 dBm				-54.59 dBn
Log					/			1	
2.00								◊'	
-8.00									
18.0									
28.0									
.38.0								n.	
48.0	2								
58.0									
68.0									
.78.0 4144 Mark Mark	Annua water dana	NAMAL WANNES AND	white arrange and	the manual states of the state	unter and the second second	through participations	n wowwww.	hammanana	Anger 14
Start 1 kHz #Res BW 200 k				Video BW 2	0 kHz*				top 200.00 MH 0 ms (1001 pts

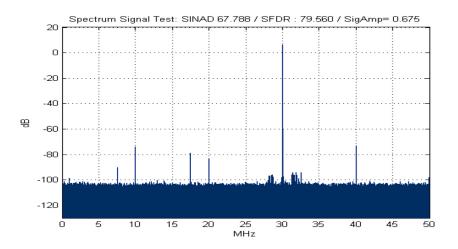
Figure 6. Single-tone spectrum @ f_{out} = 160 MHz

Digitizer Technical Specifications and Characteristics

General characteristics

	M3300A-C24		M	3300A-C	48			
Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Comments
Inputs and outputs								
Channels		4			8		Out	
Reference clock ¹		1			1		Out	
Reference clock ²		1			1		In	
Triggers/markers ^{1, 3}		1			1		In/out	Reconfigurable
Triggers/markers ^{2, 3}		8			8		In/out	Reconfigurable
Input channels overview								
Sampling rate		100			100		MSa/s	
Voltage resolution		14			14		Bits	
Input frequency ⁴	DC		100	DC		100	MHz	
Real-time BW		50			50		MHz	
Built-in functionalities								
Input conditioning blocks		4			8			1 per channel
Analog trigger processors		4			8			1 per channel
Data acquisition blocks	4		8			1 per channel		
Onboard memory								
RAM memory	16		2048	16		2048	MBytes	

1. At front panel


2. At backplane

3. Markers available from firmware version v3.0 or later

 100 MHz refer to the Front End bandwidth. This digitizer can operate in 1st and 2nd Nyquist zones (using undersampling technique), but its real-time BW is limited by Nyquist to some 50 MHz. As an example for a band-limited signal of 70 MHz with a 10 MHz signal bandwidth the aliased component will appear between 25 to 35 MHz (30 ± 5 MHz). 16 | Keysight | M3300A PXIe Arbitrary Waveform Generator and Digitizer Combo with Optional Real-Time Sequencing and FPGA Programming - Data Sheet

I/O specifications

Analog input characteristics	
Number of channels	C24 or C48
Sampling rate	100 MSa/s option CLF
Configurable inputs: impedance	50Ω or 1 MΩ (HiZ)
Configurable inputs: Coupling	AC or DC
Input voltage range (50Ω)	400 mVpp to 6Vpp (continue: variable attenuator at input)
Input voltage range (HiZ)	200 mVpp to 20Vpp (continue: variable attenuator at input)
Bandwidth limit filters	100 MHz
Effective number of bits (ENOB)1	10.8 bits @30MHz (typical)
Noise floor	-142 dBm/Hz @30 MHz (typical)
SINAD	67 dB @30 MHz (typical)
Spurious free dynamic range (SFDR) + Total Harmonic Distorsion	79 dBc (typical)

		M3300A			
Parameter	Min	Тур	Мах	Units	Comments
Reference clock output					
Frequency		10 or 100		MHz	Generated from the internal clock. User selectable
Voltage		800		mVpp	On a 50 Ω load
Power		2		dBm	On a 50 Ω load
Source impedance		50		Ω	AC coupled
External I/O trigger/marker					
V _{IH}	2		5	V	
V _{IL}	0		0.8	V	
V _{OH}	2.4		3.3	V	On a high Z load
V _{OL}	0		0.5	V	On a high Z load
Input impedance		10		KΩ	
Source impedance		TTL		-	
Speed			500	Mbps	

Data acquisition blocks (DAQs) specifications

	M	3300A-C	24	М	3300A-C	48		
Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Comments
General specifications								
DAQs		4			8			1 per channel
Aggregated speed			400			800	MSa/s	For all onboard DAQs combined
Acquisition burst multiple		5			5		Samples	Burst length must be a multiple of this value
Acquisition RAM capacity	15		957M	15		957M	Samples	Maximum depends on onboard RAM
Acquisition RAM capacity effic.		93.5			93.5		%	Effic. = waveform size/waveform size in RAM
Trigger		Selec.			Selec.			Hardware trigger (analog channels, input trigger, backplane triggers), Software trigger
DAQ specifications								·
Speed			100			100	MSa/s	Per DAQ
Resolution		14			14		Bits	

Clock system specifications

	M3300A-C24			M3300A-C48				
Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Comments
General specifications								
Clock frequency		100			100		MHz	

System Specifications

Environmental specifications (PXI Express)

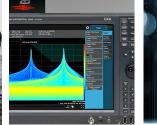
	M3	M3300A-C24			M3300A-C48						
Parameter	Min	Тур	Мах	Min	Тур	Max	Units	Comments			
System bus											
Slots		2			2		Slots	PXI Express (CompactPCI Express compatible)			
PCI Express type	Gen 1		Gen 2	Gen 1		Gen 2	-	Automatic gen negotiation, chassis dependent			
PCI Express link	1		4	1		4	Lanes	Automatic lane negotiation, chassis dependent			
PCI Express speed	400		1600	400		1600	MBytes/s	Depends on # of lanes, chassis, congestion, and more			
Sustainable throughput	200		800	200		800	MPoints/s	Depends on # of lanes, chassis, congestion, and more			
Power dissipation											
3.3 V PXIe power supply		3			3		А	~ 10 W			
12 V PXIe power supply		3.5			3.5		A	~ 40 W			
Environmental ¹											
Temperature range				1 0			0 to +55°C (10,000 feet)				
			Non-c	operating -40 to +70 °C (up to 15,000 feet)							
Max operative altitude						2000 m (10,000 feet)					
Operating Humidity range (%RF	4)					10 to 95% at 40 °C					
Non-operating Humidity range	(%RH): 5 t	o 95				5 to	5 to 95%				
Calibration interval						1 yea	1 year				
EMC						Com	Complies with European EMC Directive				
							– IEC/EN 61326-1				
							– CISPR Pub 11 Group 1, class A				
					This ISM device is in compliance with Canadian ICES-001						
						Cet appareil ISM est conforme à la norme NMB-001 du Canada.					
							This ISM device is in compliance with Australian and New Zealand RCM				
						This	This ISM device is in compliance with South Korea EMC KCC				

1. Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.

Ordering Information ¹

Product	Description
M3300A	PXI combo AWG + digitizer: 500/100 MSa/s, 16/14 bits
Options	Description
M3300A-C24 / -C48	Two channels AWG + four channels DIG ² / four channels AWG + eight channels DIG
M3300A-CLF	Fixed sampling clock, low jitter ²
M3300A-DM1	Dual modulation capability for the AWG (amplitude and angle simultaneously)
M3300A-M01 / -M12 / -M20	Memory 16 MB, 8 MSamples ² / 128 MB, 60 MSamples / 2 GB, 1 GSamples
HW programming options	Description
M3300A-HVI	Enabled HVI programming, requires an HVI design environment license (M3601A)
M3300A-FP1	Enabled FPGA programming, requires -K32 or -K41 option and an FPGA design environment license (M3602A)
M3300A-K32 / -K41	FPGA, Xilinx 7K325T / 7K410T, required for -FP1 option only (needs memory option -M20)

Related software	Description
M3601A	HVI design environment
M3602A	FPGA design environment


All options must be selected at time of purchase and are not upgradable
These options represent the standard configuration

20 | Keysight | M3300A PXIe Arbitrary Waveform Generator and Digitizer Combo with Optional Real-Time Sequencing and FPGA Programming - Data Sheet

Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight

myKeysight www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration

Register your products to get up-to-date product information and find warranty information.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Keysight Services www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings-onestop calibration, repair, asset management, technology refresh, consulting, training and more-helps you improve product quality and lower costs.

Keysight Assurance Plans www.keysight.com/find/AssurancePlans

Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/m3300a

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia 1 800 629 485 China 800 810 0189 Hong Kong 800 938 693 India 1 800 11 2626 Japan 0120 (421) 345 Korea 080 769 0800 1 800 888 848 Malaysia 1 800 375 8100 Singapore 0800 047 866 Taiwan Other AP Countries (65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

United Kingdom

For other unlisted countries: www.keysight.com/find/contactus (BP-9-7-17)

www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice. © Keysight Technologies, 2017 - 2018 Published in USA, February 20, 2018 5992-1809EN www.keysight.com

