Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ Главный метролог АО «ПриСТ»

А.Н. Новиков

ПриСТ «20» апреля 2017 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ОСЦИЛЛОГРАФЫ ЦИФРОВЫЕ ЗАПОМИНАЮЩИЕ СЕРИЙ GDS-71000B, GDS-72000E, MSO-72000E, MSO-72000EA

МЕТОДИКА ПОВЕРКИ ПР-02-2017МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок осциллографов цифровых запоминающих серий GDS-71000B, GDS-72000E, MSO-72000EA, изготавливаемых «Good Will Instrument Co., Ltd.», Тайвань.

Осциллографы цифровые запоминающие серий GDS-71000B, GDS-72000E, MSO-72000E, MSO-72000EA (далее по тексту — осциллографы) предназначены для исследования формы и измерения амплитудных и временных параметров электрических сигналов.

Межповерочный интервал 1 год.

Периодическая поверка осциллографов в случае их использования для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца измерителей, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 – Операции поверки

Таолица 1 – Операции поверки	1		
	Номер пункта	Проведение операции при	
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Проверка программного обеспечения	7.3	Да	Да
4 Определение абсолютной погрешности измерения напряжения постоянного тока	7.4	Да	Да
5 Определение ширины полосы пропускания	7.5	Да	Да
6 Определение времени нарастания переходной характеристики	7.6	Да	Да
7 Определение относительной погрешности частоты внутреннего опорного генератора	7.7	Да	Да
8 Определение относительной погрешности установки частоты функционального генератора (только для серии MSO-72000EA)	7.8	Да	Да
9 Определение относительной погрешности установки уровня выходного напряжения функционального генератора (только для серии MSO-72000EA)	7.9	Да	Да

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблинах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 – Средства поверки

таолица 2	ередеты поверки
Номер пункта МП	Тип средства поверки
7.4–7.7	Калибратор осциллографов Fluke 9500В. Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока $\pm (0,00025 \cdot \text{Uвыx} + 25 \text{ мкВ})$. Пределы допускаемой относительной погрешности установки частоты генератора $2,5 \cdot 10^{-5}$ %. Время нарастания не более 500 пс.
7.8	Частотомер универсальный CNT-90XL. Диапазон измерения частоты от $0,001~\Gamma$ ц до $300~\mathrm{M}\Gamma$ ц. Погрешность частоты опорного генератора $\pm 2\cdot 10^{-7}$
7.9	Вольтметр универсальный цифровой B7-78/1. Диапазон измерения переменного напряжения от 0 до 750 В. Пределы допускаемой абсолютной погрешности измерения переменного напряжения $\pm (0.06 \cdot 10^{-2} \cdot U_{изм} + 300 \text{ e.м.p.})$.

Таблица 3 – Вспомогательные средства поверки

Измеряемая ве-	Диапазон изме-	Класс точности, по-	Тип средства поверки
личина	рений	грешность	
Температура	от 0 до 50 °С.	±0,25 °C	Цифровой термометр-гигрометр Fluke 1620A
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511
Влажность	от 10 до 100 %	±2 %	Цифровой термометр-гигрометр Fluke 1620A

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (25±5)°С;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.;

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;

- проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование.

Опробование осциллографов проводят путем проверки их на функционирование в соответствии с руководством по эксплуатации.

При отрицательном результате проверки прибор бракуется и направляется в ремонт.

7.3 Проверка программного обеспечения.

Проверка программного обеспечения осциллографов осуществляется путем вывода на дисплей прибора информации о версии программного обеспечения. Вывод системной информации осуществляется по процедуре, описанной в руководстве по эксплуатации на прибор.

Результат считается положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	Версия ПО	
Номер версии (идентификационный номер ПО)	Не ниже 1.00	
Цифровой идентификатор ПО нет данных		
Примечание – номер версии ПО определяется по первым трем цифрам		

7.4 Определение абсолютной погрешности измерения напряжения постоянного тока

Определение погрешности измерения напряжения производится с помощью калибратора осциллографов Fluke 9500B.

- 7.4.1 Подключить калибратор осциллографов Fluke 9500B ко входу 1 осциллографа согласно руководствам по эксплуатации на приборы.
 - 7.4.2 Органы управления осциллографа устанавливают в следующие положения:
 - канал 1 Включен, связь входа DC, ограничение полосы пропускания 20 МГц;
 - синхронизация: режим Авто;
 - режим измерения Среднее значение;
 - коэффициент отклонения 10 В/дел, коэффициент развертки 1 мс/дел.
- 7.4.3 Перевести калибратор Fluke 9500B в режим воспроизведения напряжения постоянного тока положительной полярности. На выходе калибратора установить напряжение постоянного тока величиной 30 B.

- 7.4.4 Подать напряжение с калибратора на вход канала 1 осциллографа. При этом неиспользуемые каналы должны быть отключены.
- 7.4.5 Произвести измерения входного напряжения постоянного тока в автоматическом режиме измерения осциллографа.
- 7.4.6 Провести измерения по п.п. 7.4.1 7.4.5 при остальных положениях переключателя «В/дел» поверяемого осциллографа, устанавливая уровень напряжения с калибратора равный 3·Ко, где Ко установленный коэффициент отклонения осциллографа.
- 7.4.7 Провести измерения по п.п. 7.4.1 7.4.6 для отрицательной полярности напряжения калибратора.
- 7.4.8 Провести измерения по п.п. 7.4.1 7.4.7 для остальных каналов осциллографа. При этом неиспользуемые каналы должны быть отключены.
- 7.4.9 Определить абсолютную погрешность измерения напряжения постоянного тока по формуле:

$$\Delta_{\mathrm{U}} = \mathbf{U}_{\mathrm{X}} - \mathbf{U}_{\mathrm{0}},\tag{1}$$

где U_X – значение уровня напряжения, измеренное поверяемым осциллографом, B; U_0 – значение уровня напряжения, установленное на калибраторе, B.

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках значение погрешности не превышает пределов, определяемых по формуле:

$$\pm (0.03 \cdot 8 \cdot \text{Ko} + 1 \text{ MB}),$$
 (2)

где Ко – значение коэффициента отклонения, мВ/дел.

7.5 Определение ширины полосы пропускания

Определение ширины полосы пропускания осциллографа проводить методом прямого измерения поверяемым прибором частоты испытательного сигнала, воспроизводимого эталонной мерой – калибратором осциллографов Fluke 9500B.

- 7.5.1 Подключить калибратор осциллографов Fluke 9500B ко входу 1 осциллографа согласно руководствам по эксплуатации на приборы. При этом неиспользуемые каналы должны быть отключены.
- 7.5.2 Установить коэффициент отклонения поверяемого осциллографа 20 мВ/дел, коэффициент развертки 100 мкс/дел; ограничение полосы пропускания выключено.
- 7.5.3 Установить на выходе калибратора Fluke 9500В синусоидальный сигнал частотой 50 кГц и установить размах сигнала от 4 до 6 делений по вертикали. Измерить размах сигнала Uопорное при помощи автоматических измерений осциллографа.
- 7.5.4 Установить на выходе калибратора Fluke 9500В сигнал с частотой, соответствующей верхней граничной частоте полосы пропускания поверяемого осциллографа.
- 7.5.5 Установить на поверяемом осциллографе величину коэффициента развертки 10 нс/дел.
- 7.5.6 Увеличивать частоту сигнала с калибратора до тех пор, пока размах сигнала на экране осциллографа не станет равным 0,708·Uопорное.
- 7.5.7 Записать установленную частоту с дисплея калибратора, которая будет соответствовать частоте полосы пропускания осциллографа.
- 7.5.8 Провести измерения по п.п. 7.5.1 7.5.7 для остальных коэффициентов отклонения осциллографа до 1 В/дел включительно.
- 7.5.9 Провести измерения по п.п. 7.5.1 7.5.8 для остальных каналов осциллографа. При этом неиспользуемые каналы должны быть отключены.

Результаты поверки считаются удовлетворительными, если значение полосы пропускания осциллографа не менее значения, приведенного в таблице 5.

Таблица 5 - Полоса пропускания по уровню -3 дБ

Характеристика	Модификации	Значение
Полоса пропускания	GDS-71054B	50
по уровню -3 дБ, МГц, не менее	GDS-71072B, GDS-71074B, GDS-72072E, MSO-72072E, MSO-72072EA, GDS-72074E, MSO-72074E, MSO-72074EA	70
	GDS-71102B, GDS-71104B, GDS-72102E, MSO-72102E, MSO-72102EA, GDS-72104E, MSO-72104E, MSO-72104EA	100
	GDS- 72202E, MSO-72202E, MSO-72202EA, GDS-72204, MSO-72204E, MSO-72204EA	200

7.6 Определение времени нарастания переходной характеристики

- 7.6.1 Определение времени нарастания переходной характеристики (ПХ) производится путем подачи на вход осциллографа импульса с малым временем нарастания воспроизводимого эталонной мерой калибратором осциллографов Fluke 9500В с использованием формирователя 9530 или 9510.
- 7.6.2 Выход формирователя подключить на вход первого канала поверяемого осциллографа через проходную нагрузку 50 Ом. Установить на калибраторе режим формирования сигнала с малым временем нарастания согласно руководству по эксплуатации на калибратор.
 - 7.6.3 Органы управления осциллографа устанавливают в следующие положения:
 - канал 1 Включен, связь входа DC, ограничение полосы пропускания Выключено;
 - синхронизация: тип Фронт, источник Кан 1, режим Авто;
 - сбор информации: режим выборка
 - коэффициент развертки минимальный, при котором наблюдается фронт импульса;
 - настройки экрана: тип Вектор, послесвечение Выключено;
 - режим измерения Время нарастания;
 - коэффициент отклонения 5 мВ/дел.
- 7.6.4 Установить амплитуду импульса на экране осциллографа не меньше 4 делений по вертикали.
 - 7.6.5 Определить время нарастания переходной характеристики по формуле (3):

$$t_{IIX} = \sqrt{t_X^2 - t_O^2} \,, \tag{3}$$

где t_X — значение времени нарастания, измеренное поверяемым осциллографом, пс; t_0 — значение времени нарастания формирователя калибратора, пс.

7.6.6 Повторить измерения по п.п. 7.6.1 - 7.6.5 для остальных значений коэффициентов отклонения до $1~\mathrm{B/дел}$ включительно.

7.6.7 Повторить измерения по п.п. 7.6.1 - 7.6.6 для остальных каналов осциллографа.

Результаты поверки считаются удовлетворительными, если вычисленные по формуле (3) значения времени нарастания не превышают значений, приведенных в таблице 6.

Таблица 6 - Определение времени нарастания переходной характеристики

	1	
Модификация	Допускаемое значение времени	
осциллографов	нарастания ПХ, нс, не более	
GDS-71054B	7	
GDS-71072B, GDS-71074B, GDS-72072E, MSO-72072E,	5	
MSO-72072EA, GDS-72074E, MSO-72074E, MSO-72074EA	3	
GDS-71102B, GDS-71104B, GDS-72102E, MSO-72102E,	2.5	
MSO-72102EA, GDS-72104E, MSO-72104E, MSO-72104EA	3,5	
GDS- 72202E, MSO-72202E, MSO-72202EA, GDS-72204,	1,75	
MSO-72204E, MSO-72204EA	1,/3	

7.7 Определение относительной погрешности частоты внутреннего опорного генератора

Определение относительной погрешности частоты внутреннего опорного генератора проводить методом прямого измерения поверяемым прибором частоты испытательного сигнала, воспроизводимого эталонной мерой – калибратором осциллографов Fluke 9500B.

- 7.7.1 Подключить калибратор осциллографов Fluke 9500B ко входу 1 осциллографа согласно руководствам по эксплуатации на приборы.
 - 7.7.2 Выполнить следующие установки осциллографа:
 - канал 1 Включен, связь входа DC, ограничение полосы пропускания Выключено;
 - синхронизация: режим Авто;
 - коэффициент развертки 1 мкс/дел.
- 7.7.3 Подать на вход осциллографа синусоидальный сигнал с калибратора, частотой Fтест=10 МГц. Амплитуду сигнала с калибратора установить не менее 6 делений по вертикальной шкале осциллографа.
- 7.7.4 Произвести считывание результата измерения частоты с экрана поверяемого прибора по индикатору измерения частоты: **Г** 10.0002MHz
- 7.7.5 Определить относительную погрешность частоты внутреннего опорного генератора по формуле:

$$\delta_{\text{F}} = [(\text{Fизм-Frect})/\text{Frect}] \cdot 100\%,$$
 (4)

Fтест – значение частоты, установленное на калибраторе, Гц.

Результаты поверки считаются удовлетворительными, если вычисленное по формуле (4) значение погрешности не превышает $\pm 0,005\%$.

7.8 Определение относительной погрешности установки частоты функционального генератора (только для серии MSO-72000EA)

Определение относительной погрешности установки частоты функционального генератора проводить методом прямых измерений с помощью частотомера универсального CNT-90XL.

- 7.8.1 Подключить первый канал генератора ко входу «А» частотомера.
- 7.8.2 Выбрать в меню «Опции» пункт «Генератор1». Установить синусоидальную форму сигнала.
 - 7.8.3 Установить амплитуду сигнала 1 В.
- 7.8.4 Устанавливая частоту сигнала из ряда: $100~\Gamma$ ц; $1~\kappa$ Гц; $10~\kappa$ Гц; $100~\kappa$ Гц; $500~\kappa$ Гц; 1~MГц; 5~MГц; 10~MГц; 15~MГц; 20~MГц; 25~MГц провести измерения частоты частотомером CNT-90XL.
- 7.8.4 Установить в генераторе прямоугольную форму сигнала. Частоту сигнала установить 0,1 Гц. Провести измерение установленной частоты прямоугольного сигнала с генератора частотомером.
 - 7.8.5 Определить относительную погрешность установки частоты по формуле:

$$\delta_F = \frac{F_{ycr} - F_0}{F_0} \cdot 100\% \; ; \tag{5}$$

где F_{ycr} – установленное значение частоты сигнала генератора, Γ ц;

 F_0 – значение частоты, измеренное частотомером CNT-90XL, Γ ц.

7.8.6 Повторить измерения по п.п. 7.8.1 - 7.8.5 для второго канала генератора.

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках значение погрешности не превышает $\pm 0{,}005\%$.

7.9 Определение относительной погрешности установки уровня выходного напряжения функционального генератора (только для модификаций серии MSO-72000EA)

Определение относительной погрешности установки уровня выходного напряжения функционального генератора проводить методом прямых измерений с помощью вольтметра универсального цифрового B7-78/1.

- 7.9.1 Подключить первый канал генератора ко входу измерения напряжения вольтметра через проходную нагрузку 50 Ом.
- 7.9.2 Выбрать в меню «Опции» пункт «Генератор1». Нажать кнопку «синус» для включения синусоидальной формы сигнала.
 - 7.9.3 Установить сопротивление на выходе генератора 50 Ом
 - 7.9.4 Установить частоту выходного сигнала 1 кГц.
- 7.9.5 Устанавливая уровень выходного сигнала (размаха от пика до пика) из ряда: 10 мВ; 500 мВ; 1,5 В; 2 В; 2,5 В, провести измерения уровня выходного сигнала вольтметром В7-78/1.

Определить относительную погрешность установки уровня выходного сигнала по формуле:

$$\delta_U = \frac{\mathbf{U}_{\text{yer}} - 2 \cdot \sqrt{2} \cdot \mathbf{U}_0}{2 \cdot \sqrt{2} \cdot \mathbf{U}_0} \cdot 100\% ; \qquad (6)$$

где U_{ycr} — установленное значение уровня выходного сигнала генератора, B; U_0 — значение напряжения, измеренное вольтметром B7-78/1, B.

7.9.6 Повторить измерения по п.п. 7.9.1 - 7.9.5 для второго канала генератора.

Результаты поверки считаются удовлетворительными, если во всех поверяемых точках значение погрешности не превышает пределов $\pm 2\%$.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки осциллографов оформляется свидетельство о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".
- 8.2 При отрицательных результатах поверки прибор не допускается к дальнейшему применению, в паспорт вносится запись о непригодности его к эксплуатации, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Главный метролог АО «ПриСТ»

А.Н. Новиков