СОГЛАС	OBAHO
Руководитель	ГЦИ СИ -
Зам.Генералы	ного директора
ФГУ «РОСТІ	ECT – Москва»
	А.С.Евдокимов
«»	2004 г.

10. ПОВЕРКА ПРИБОРА

Настоящий раздел составлен в соответствии с требованиями ГОСТ 8.314-78, МИ 1835-88 и МИ 2526-99 и устанавливает методы и средства поверки генератора сигналов специальной формы GFG-3015.

Периодичность поверки — один раз в год.

10.1. Операции поверки

При проведении поверки выполняются операции указанные в табл. 10.1.

Таблина 10.1

		таолица 10.1
Номер пункта	Проведени	не операции при
раздела поверки	первичной	периодической
	поверки	поверке
2	3	4
10.6.1	Да	Да
10.6.2	Да	Да
грологических пар	аметров	
10.6.3	Да	Да
10.6.4	Да	Да
10.6.5	Да	Да
10.6.6	Да	Да
10.6.7	Да	Да
10.6.8	Да	Да
10.6.9	Да	Да
10.6.10	Да	Да
10.6.11	Да	Да
	раздела поверки 2 10.6.1 10.6.2 грологических пар 10.6.3 10.6.4 10.6.5 10.6.6 10.6.7 10.6.8 10.6.9 10.6.10	раздела поверки 2 3 10.6.1 Да 10.6.2 Да грологических параметров 10.6.3 Да 10.6.4 Да 10.6.5 Да 10.6.6 Да 10.6.7 Да 10.6.8 Да 10.6.9 Да 10.6.10 Да

10.2.Средства поверки

При проведении поверки должны применяться средства поверки, указанные в таблице 10.2.

Применяемые при поверке средства измерений должны быть исправны, поверены и иметь свидетельства о государственной поверке.

При проведении поверки допускается использование эталонных средств измерений другого типа, соответствующих по своим метрологическим и техническим характеристикам СИ, указанным в таблице 10.2.

Номер	Наименование и тип эталона или вспомогательного средства поверки;		
пункта методики	обозначение нормативного документа, регламентирующего технические		
поверки	требования и (или) метрологические и основные технические		
	характеристики средства поверки		
10.6.2; 10.6.3;	Осциллограф НР 54645D; ТО		
10.6.8; 10.6.9			
10.6.3; 10.6.4;	Частотомер электронно-счетный Ч3-64: ТО		
10.6.10			
110.6.5	Милливольтамперметр Ф5263: ТО		
	Вольтметр переменного тока диодный компенсационный В3-49: ТО		
	Соединитель ТП-121 из комплекта В1-16		
10.6.6	Вольтметр универсальный цифровой В7-40: ТО		
11.6.7	Измеритель нелинейных искажений автоматический С6-11: ТО		
	Анализатор спектра НР8596Е; РЭ		
10.6.11	Генератор сигналов низкочастотный прецизионный Г3-110: ТО		
	Генератор сигналов высокочастотный Г4-201: ТО		

10.3. Условия поверки и подготовка к ней

При проведении поверки должны, соблюдаться следующие условия:

- температура окружающей среды (20±5)°С;
- относительная влажность воздуха от 30 до 80%;
- атмосферное давление (750±30) мм рт.ст.;
- напряжение сети 220±22 В;
- частота сети (50 ± 1) Γ ц с содержанием гармоник до 5%.

10.4. Требования к квалификации поверителей

К проведению поверки могут быть допущены лица, аттестованные в качестве поверителей и имеющие практический опыт работы в области радиотехнических измерений не менее одного года.

10.5. Подготовка к поверке.

- 10.5.1. Поверитель должен изучить руководства по эксплуатации поверяемого прибора и используемых при поверке средств измерений.
- 10.5.2. Должно быть проверено соответствие условий поверки требованиям настоящей методики.
- 10.5.3. Перед проведением поверки необходимо выполнить подготовительные работы, оговоренные в разделе 7 руководства по эксплуатации поверяемого прибора и в РЭ (ТО) применяемых средств поверки.
- 10.5.3. Перед включением приборов должно быть проверено выполнение требований безопасности.
- 10.5.4. Определение метрологических характеристик поверяемого прибора должно производиться по истечении времени установления рабочего режима, равного 30 мин.

10.6. Проведение поверки.

10.6.1. При проведении внешнего осмотра необходимо проверить:

- сохранность пломб;
- комплектность согласно таблице 3.1;
- отсутствие внешних механических повреждений, влияющих на точность

- показаний прибора;
- прочность крепления органов управления, четкость фиксации их положений;
- наличие предохранителей;
- чистоту разъемов и гнезд;
- состояние лакокрасочных покрытий, гальванических покрытий и четкость гравировки.

Приборы, имеющие дефекты, бракуются и направляются в ремонт.

10.6.2. Опробование прибора производится в два этапа. На первом этапе оценивается исправность прибора по п.7.10. Далее сигнал с основного выхода прибора подается через тройник на нагрузку 50 Ом и осциллограф и проводится проверка функционирования прибора в соответствии с п.п.8.2.6, 8.2.9 – 8.2.12.

Неисправные приборы бракуются и направляются в ремонт.

10.6.3. Определение диапазона частот проводится прямым измерением частоты сигнала при предельных номинальных значениях частоты, устанавливаемых на генераторе.

На генераторе устанавливается по индикатору минимально возможное значение частоты $F_{miny}=0.01~\Gamma$ ц. Форма сигнала — синус, уровень — 1~B~ (Upp). Сигнал подается на вход осциллографа HP 54645D. На осциллографе устанавливается коэффициент отклонения 0.1~B, коэффициент развертки 20~ с/дел. Измеряется в автоматическом режиме частота сигнала F_{Zminy} .

Затем на генераторе устанавливается максимально возможное значение частоты $F_{maxy}=15~M\Gamma$ ц. Действительное значение частоты F_{maxy} измеряется частотомером с устанавленным временем счета $1~{\rm Mc}$.

Прибор годен, если $F_{Z_{minv}}$ < 0,01 Γ ц и 14996,5 κ Γ ц < $F_{Z_{maxv}}$ < 15003,5 κ Γ ц.

10.6.4. Погрешность установки частоты определяется прямыми измерениями частоты (или периода) частотомером. Измерения проводятся при установленном значении уровня выходного сигнала генератора Upp =1 B.

Таблица 10.3

Fуст	Параметры частотомера		Допустимые пределы
	время счета ms, множитель	метки времени	Г изм / Тизм
1	2	3	4
1,00 Гц		4	0,952 1,053 c
1,51 Гц	10^{0}	10^{-4}	641 684 мс
9,87 Гц	1	4	100,8 101,8 мс
15,01 Гц	10^{1}	10 ⁻⁴	66,41 66,84 мс
100,00 Гц			9,930 10,070 мс
123,45 Гц		10 ⁻⁵	8,0956 8,1053 мс
150,01 Гц	10^{2}		6,6627 6,6697 мс
750 Гц			1332,981333,69 мкс
1,5 кГц			666,511 666,820 мкс
7,6 кГц	10^{3}	10^{-6}	131,544 131,613 мкс
15 кГц			66,651 66,682 мкс
150 кГц			$(150,000 \pm 0,035)$ к Γ ц
1,5 МГц		-	$(1500,00 \pm 0,35)$ к Γ ц
10,5 МГц	10^{2}		$(10500,0\pm2,6)$ к Γ ц

В таблице 10.3 приведены значения частот Fуст, устанавливаемых на генераторе, для которых определяются погрешности, режимы работы частотомера и допустимые пределы для результата измерения частоты(периода).

Прибор годен, если измеренные значения частоты (периода) находятся в пределах, приведенных в столбце 4 таблицы 10.3.

10.6.5. Определение погрешности установки уровня выходного сигнала проводится прямыми измерениями напряжения вольтметром. Измерения проводятся для

синусоидального сигнала на нагрузке 50 Ом.

Сигнал с выхода генератора через переход типа 114/4 подается на тройник ТП-121 из комплекта прибора В1-16, к которому подключены согласованная нагрузка СН-104 из комплекта В1-16 и пробник вольтметра В3-49. Измерения действительного среднеквадратического значения напряжения U_{π} проводятся для установленного значения уровня генератора $U_{\text{уст}} = 2.8 \text{ B } (U_{pp})$ не менее, чем при шести значениях частоты. Обязательными являются частоты: 20,00 и 800,00 Гц; 9,0000 и 150,01 кГц; 7,5 и 15.0 МГп.

Затем вставка в тройнике заменяется и подключается вольтметр Ф5263. Измеряется U_{π} при $U_{ycr}=0,30;~1,00;~3,00;~5,00;~7,50$ и 10,00 В (U_{pp}) на частотах 50 Γ ц, 15,001 и 100 к Γ ц. Абсолютная погрешность установки уровня δ_y вычисляется по формуле:

$$\delta_y = U_{ycr} - 2,828 U_{\pi}$$

Прибор годен, если вычисленные значения погрешности δ_v соответствуют п.2.2.2.

10.6.6. Определение диапазона и погрешности установки постоянного смещения осуществляется прямыми измерениями вольтметром В7 - 40 постоянного напряжения на выходе генератора.

К выходу генератора подключаются согласованная (50 Ом) нагрузка и вольтметр. На генераторе устанавливается минимально возможное значения уровня сигнала Upp = 0,01 В. Остальные параметры выходного сигнала могут иметь произвольные значения. Измерения проводятся при 10-15 значениях смещения, равномерно распределенных по диапазону, включая оба предельных значения \pm 4,99 В. Абсолютная погрешность установки смещения $\delta_{\text{см}}$ вычисляется по формуле:

$$\delta_{c_M} \; = \; U_{c_M} - U_{{\scriptscriptstyle M3M}},$$

где $U_{\text{см}}$ – установленное по индикатору прибора значение напряжения смещения, $U_{\text{изм}}$ – его действительнее значение, измеренное вольтметром в режиме измерения постоянного напряжения.

Прибор годен, если:

- по индикатору устанавливаются все выбранные значения смещения;
- действительные значения $U_{cy} = \pm 4,99 B$ по абсолютной величине не менее 4,99B;
- погрешность δ_{cm} не выходит за пределы, указанные в п.2.2.3, для всех установленных значений.

10.6.7. Определение содержания гармоник в непрерывном синусоидальном сигнале осуществляется двумя способами:

- прямыми измерениями коэффициента гармоник в диапазоне частот 20 Гц ... 19,9 кГц с помощью измерителя нелинейных искажений С6-11;
- измерением уровня гармонических составляющих в диапазоне частот $20,00~\rm k\Gamma \mu \dots 15~\rm M\Gamma \mu$ с помощью анализатора спектра HP 8596 E.

Измерения проводятся при выходном напряжении Upp = 2,83 В.

Измерителем С6-11 измеряется коэффициент гармоник Кг при частотах выходного сигнала $20~\Gamma$ ц, 10~и 19,9~к Γ ц.

При работе с анализатором спектра на входе анализатора включается внешний аттенюатор 20 дБ. На анализаторе устанавливаются следующие значения параметров:

- входной импеданс 50 Ом;
- опорный уровень (REF LEV) 10 дБмВт;
- полоса обзора в зависимости от частоты входного сигнала так, чтобы на экране индицировался сигнал с двумя гармониками.

С помощью маркеров измеряется уровень гармонических составляющих относительно уровня основного сигнала. Обязательными являются частоты 94 и 750 кГц, 2 и 15 МГц.

Прибор годен, если измеренные значения коэффициента гармоник не превышают 0,70 % и уровень каждой гармоники относительно уровня основной частоты не более

минус 46 дБ в диапазоне частот до 100 кГц и не более минус 30 дБ для остальных частот.

10.6.8. Определение длительностей фронта и среза прямоугольного сигнала осуществляется с помощью осциллографа НР 54645D.

Сигнал с основного выхода генератора подается через тройник на нагрузку 50 Ом и на вход осциллографа (нагрузка и осциллограф находятся на одном и том же конце кабеля). Коэффициент развертки осциллографа устанавливается не более 10 нс/дел, коэффициент отклонения - таким, чтобы на экране полностью поместился сигнал, параметры которого измеряются.. При измерении фронта запуск осциллографа осуществляется по фронту импульса (Edge ↑), при измерении среза – по срезу (Edge ↓).

При малых частотах добиваются появления необходимой картинке на экране в режиме однократного запуска (Single) и, при необходимости, с помощью режима запоминания (Autostore). В режиме измерения осциллографом временных параметров определяются автоматически длительности среза и фронта. При необходимости проводится усреднение по результатам 10 измерений (для одного и того же сигнала). Измерения проводятся на частотах 100 и 950 Гц; 500 кГц; 1; 10 и 15 МГц при установленном значении уровня Upp = 10 В.

Прибор годен, если все измеренные значения фронта и среза не превышают 22 с.

10.6.9. Скважность Q сигнала прямоугольной формы определяется путем измерения периода следования импульсов T и длительности импульсов положительной полярности T_+ (рис.1.1) и дальнейшем вычислении по формуле:

$$O = T / T_+$$
.

Измерения проводятся при установленных значениях уровня Upp = 0,01; 2,83 и 10 В на частотах 1 Γ ц; 1,479 к Γ ц и 1 М Γ ц при нулевом постоянном смещении На частотах 1 Γ ц и 1,479 к Γ ц период T и длительность T_+ измеряются частотомером Ч3-63. На частотомере устанавливаются следующие параметры:

- метки времени, $s=10^{-4}\,$ для частоты 1 Γ ц и 10^{-7} для частоты 1,479 к Γ ц;
- время счета, ms/множитель = 10^1 ;
- переключатель полярности импульсов канала Б в положение Π ;
- переключатель «~/¬» в положение «¬».

При частоте сигнала 1 МГц период Т и длительность T_+ измеряются по осциллографу HP 54645D с помощью временных маркеров. Параметры осциллографа устанавливаются автоматически кнопкой AUTOSCALE. Первый маркер располагается на пересечении линии фронта одного из положительных импульсов с линией, соответствующей нулевому значению напряжения (его координата по временной оси t_0). Второй маркер располагается последовательно на пересечении среза этого импульса и фронта следующего положительного импульса с нулевой линией: координаты соответственно t_1 и t_2 . Для достижения необходимой точности координаты временных маркеров t_0 , t_1 и t_2 уточняются с помощью перехода к коэффициенту развертки t_0 0 нс/дел. Значение скважности t_0 0 вычисляется по формуле:

$$Q = (t_2 - t_0) / (t_1 - t_0).$$

Прибор годен, если все определенные значения скважности находятся в интервале (2 $\pm\,0,\!01).$

10.6.10. Погрешность установки частоты внутреннего модулирующего генератора определяется путем измерения периода сигнала частотомером Ч3-63 на выходе модулирующего генератора. Измерения проводятся не менее, чем на четырех частотах Fуст, указанных в таблице 10.4. В этой таблице приведены также положения переключателей частотомера и допустимые пределы для результатов измерения.

Таблица 10.4

Fуст	Параметры частотомера		Допустимые пределы
	время счета ms, множитель	метки времени	Тизм
0,10 Гц		2	8700 мс 11700 мс
0,99 Гц	10^{0}	10 ⁻³	953 мс 1074 мс
99 Гц			9,53 мс 10,74 мс
10,00 кГц	10^{2}		94,4 мкс 106,4 мкс

Прибор годен, если результаты измерений находятся в пределах, приведенных в последнем столбце таблицы 10.4.

10.6.11. Погрешность измерения частоты и чувствительность частотомера определяются одновременно: на вход частотомера поверяемого прибора подается сигнал известной частоты с минимальным уровнем (в соответствии с п.2.10.2). В диапазоне частот до 2 МГц используется генератор Г3-110, в остальной части частотного диапазона — Г4-201. Сигнал с генераторов на вход прибора подается через нагрузку 50 Ом.

При работе с генератором Г3-110 сигнал снимается с выхода 2, на нем по встроенному индикатору устанавливается напряжения 2 В и ослабление 29 дБ, что соответствует уровню 35 мВ на входе поверяемого прибора.

При работе с Γ 4-201 уровень сигнала устанавливается равным минус 29 дБВ в диапазоне частот до 100 М Γ ц и минус 27 дБВ (соответствует 45 мВ) - в остальной части частотного диапазона.

Измерения проводятся на частоте 1,111199 МГц для всех возможных значений времени счета частотомера (0,01~c;~0,1~c;~1~c~u~10c). При измерении других частот сигнала время счета частотомера устанавливается максимально возможным (до появления индикации переполнения — OVER). Обязательными являются частоты 100 Гц; 999,999 кГц; 9,99998 МГц; 150 МГц.

Абсолютная погрешность измерения частоты δ_F вычисляется по формуле:

$$\delta_F$$
 = Fизм – Fc,

где Fc – действительное значение частоты сигнала эталонного генератора, Fизм – показания поверяемого прибора.

Прибор годен, если при минимальном значении уровня входного сигнала погрешность измерения частоты соответствует требованиям п.2.10.3.

10.7. Оформление результатов поверки

- 10.7.1. При выполнении операций поверки оформляются протоколы по произвольной форме.
- 10.7.2. На прибор, прошедший поверку, выдается свидетельство о поверке установленного образца в соответствии с ПР 50.2.006.
- 10.7.3. Отрицательные результаты поверки оформляются в соответствии с требованиями ПР 50.2.006.